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ABSTRACT1
Macroscopic traffic flow analysis usually assumes that autonomous vehicles (AVs) preserve per-2
fect microscopic behaviors. This allows AVs to maintain shorter headways than human-driven3
vehicles, resulting in a greater capacity for the overall traffic if the market penetration is suffi-4
ciently high. Nevertheless, as a special class of ground robots, autonomous vehicles are inevitably5
subject to errors in their operation, particularly in perception, causing inconvenient uncertainty in6
their movements. With this deficiency, current automated vehicles on the road often sacrifice ef-7
ficiency for safety by employing conservative operations strategies. Such strategies include long8
car-following distances, frequent emergency braking actions and cautious lane changing strategies,9
which nullify the desired systematic benefits of fully- or mixed- autonomous traffic.10

To reconcile the inconsistency above, we propose an analytical model framework that de-11
scribes the endogenous relationship between safety and capacity that arises from robotic uncer-12
tainty in AVs. Our study focuses on the fully autonomous environment, where the propagation of13
uncertainty from an AV’s perception to its movement is first established. The collision rate due to14
uncertain movements is then derived, providing an explicit link between safety and traffic capacity.15
Finally, the relationship between safety and capacity is streamlined over traffic density, one of the16
most fundamental metrics of traffic flows. Specifically, we substantiate the model framework in the17
car-following scenario, where only forward perception, longitudinal movements, and the rear-end18
collision are considered. Correspondingly, the mathematical dependence of traffic capacity and19
safety are described as a function of headway under different designated speed. This model further20
enables us to balance the trade-off between safety and traffic capacity for traffic management pur-21
poses. The choice of either conservative or aggressive operational policies determines whether we22
optimize safety performance that meets capacity requirements or maximize traffic capacity within23
an acceptable range of collision rate. In reverse, given the expected performance of traffic safety24
and efficiency, this model also indicates the maximum tolerable uncertainty of AVs, contributing25
to the testing and development of the technology.26

27
Keywords: autonomous vehicles, robotic uncertainty, traffic capacity, collision rate, sensor error28
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INTRODUCTION1
The advent of autonomous vehicles (AVs), or fully automated vehicles, offers the potential to im-2
prove both the overall traffic safety and efficiency (1, 2). AVs with intelligent decision-making3
abilities and accurate machinery operations will be able to prevent accidents caused by human er-4
rors, which is identified as the main cause of car crashes (3). When investigating their impact on5
traffic efficiency, AVs are usually treated as ideal machines with more advanced driving capabil-6
ities. Accordingly, AVs are assumed to maintain a shorter stable headway in traffic streams than7
human-driven vehicles (HDVs) (4), contributing to different levels of increased roadway capacity8
relevant to their market penetration (5–9).9

However, AVs are prone to systematic errors due to their robotic nature. Like other ground10
robots, AV operations typically consist of four modules: perception, localization, planning (or11
decision-making) and control (10–12). Each of these modules introduces a certain degree of un-12
certainty, resulting in a deviation between an AV’s real position and its designed one. The potential13
harm on traffic safety caused by this deficiency has prompted research on more intelligent mod-14
ules that can improve AVs’ operational accuracy. For instance, Thrun (13) used Bayes’ theorem15
to estimate the state of the vehicle, and derived the most likely position for decision-making refer-16
ence. Kalman Filter was adopted to reduce the overall error by fusing multiple sensor data together17
Roumeliotis and Bekey (14). The uncertainty has also been considered in adaptive cruise control18
(ACC) and cooperative adaptive cruise control (CACC) to form a better platoon performance (15).19
A more comprehensive review could be found in (16–18).20

Meanwhile, autonomous driving companies are taking a much more conservative approach21
when testing their pilot vehicles in practice. The lack of clear laws and regulations on AV op-22
erations (19), coupled with public concerns on autonomous driving accidents (20–22), prevent23
profit-driven companies from deploying more advanced technologies in the field tests. Compared24
with HDVs, these pilot vehicles are driving slower, and keeping longer car-following distances on25
road, sacrificing the traffic efficiency in exchange for safety.26

In light of all these facts, this paper aims to investigate the mutual relationships between27
traffic efficiency and safety performance in a fully autonomous-vehicle environment, with robotic28
uncertainties as a determining factor. We first build a conceptual model framework, starting with29
the stochastic propagation formulation of errors originating from perception, the module thought30
to have the greatest impact on AV movement accuracy (23, 24). In this way, we can establish a31
relationship between traffic density and collision rate, connecting traffic capacity and safety at a32
macro level. A car-following scenario further substantiates the conceptual model, in which only33
forward perceptions, longitudinal movements, and rear-end collisions are considered. As a result,34
the average capacity and collision rate can be explicitly formulated by two simple parameters,35
bump-to-bump distance, and the associated average speed.36

Considering the stochastic nature of traffic flows is not a new thing in literature. To name a37
few, Krauß (25) considered the variance capabilities of acceleration and deceleration in modeling38
a stochastic microscopic car-following model; Jabari and Liu (26) proposed a macroscopic traffic39
flow model with state-dependent time headways; Xu and Laval (27) modeled the acceleration40
error process as a Brownian motion. However, most of them consider randomness to be attributed41
to the heterogeneity of human drivers, and some resort to non-stationary traffic states observed42
in aggregated traffic data (28). In contrast, AVs have no such heterogeneous intentions. And to43
the best of the authors’ knowledge, the essential systematic robotic errors of AVs have not been44
covered, and this paper serves as the first attempt to incorporate AVs’ robotic uncertainty in the45
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traffic flow analysis.1
Unlike most accident-free traffic models proposed previously, this paper explicitly uses2

accident-inclusive traffic capacities to represent traffic efficiency, with AVs’ robotic errors as the3
only sources of accidents. In addition, since we are interested in the maximum capacity that can4
be offered by AV technology, we do not consider the effect of demand on the realized traffic5
efficiency. The derived analytical model are expected to quantify the magnitude of robotic errors6
on the integrated traffic efficiency and safety performance, which is promising to bring insights on7
the accuracy of autonomous driving sensors and algorithms.8

The structure of this paper is organized as follows. We first establish a general concep-9
tual model from error propagation to the formation of the relationship between traffic capacity10
and safety. Then a car-following specification of this model is given, followed by mathematical11
analyses and discussions. We draw our conclusions in the end.12

THE GENERAL MODEL FRAMEWORK13
In this section, we first present the conceptual framework of the stochastic propagation through14
the four modules of AV operations. Based on that, the safety performance and the efficiency15
performance of an autonomous traffic are derived.16

Stochastic movements of AVs17
Error propagation18
Before planning its local route and movement, an autonomous vehicle perceive the surrounding19
environment to localize itself. In equation (1a), we denote the set of the actual position and the20
geometric relationship of object around as P. When employing multiple sensors like cameras,21
radars, Lidars to observe objects around, there exists a certain degree of error in the observation22
, shown as ε i

O, ∀i in (1b), due to sensors’ accuracy limitation. In (2a) - (2b), L represents the23
localization function used by the ego autonomous vehicle and an estimation pe

ego could be made24
with the set of observation Po. Therefore, a deviation between the estimated position and the actual25
position would exist, expressed by εL in (2c).26

P = {pi|i = 1,2,3, ...} (1a)27

Po = {po
i |po

i = pi + ε
i
O, i = 1,2,3, ...} (1b)2829

pego = L(P) (2a)30

pe
ego = L(Po) (2b)31

pe
ego = pego + εL (2c)3233

In (3a) and (3b), the decision function D implies that the decisions of autonomous vehicles,34
acceleration, steering, etc., are made according to the position of surrounding objects and its own35
location. Decision-making function is shown as In addition to the localization error, the decision of36
autonomous vehicles based on perception and localization would also have some offset, resulting37
in a deviation, of εD between the actual motion of the autonomous vehicle and the designed one38
denoted in (3c).39
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uego = D(P, pego) (3a)1

ue
ego = D(Po, pe

ego) (3b)2

ue
ego = uego + εD (3c)34

Stochastic motion5
Thus, given the same conditions, the stochastic motion will cause the ego AV to appear in various6
possible positions in the space. Note that, although we write the stochastic motion of autonomous7
vehicle as shown in (3c), this does not mean that a series of random motions are simply additive, as8
it will lead to infinite error growth and systematic instability. Indeed, it is an issue that needs careful9
treatments in the control module, which is beyond the scope of this paper. We instead assume a10
stable AV operation system, where the uncertainty of position converges to a fixed time-invariant11
distribution, as shown in (4).12

pego = p∗+ εP ∼ X (4)1314
In practice, the distribution X is jointly determined by sensing accuracy and autonomous15

driving algorithms, reflecting the ability of an AV. Under the same level of sensing accuracy, the16
more advanced the driving algorithm is, the smaller the variance of εP, indicate that the actual17
position distribution of a AV pego is more concentrated around the designed position p∗. In this18
paper, we assume that the optimal driving algorithm is adopted, so that pego is mostly determined19
by sensing accuracy.20

Measurement of traffic safety21
We use the probability of collision, which equals to the collision rate in macro statistics, to uni-22
formly quantify the AV safety performance. As shown in (5), two factors contribute to the probabil-23
ity of collision, Pc. One is the distribution of possible positions, X , determined by the precision of24
sensors. Another is the collision region, C, indicating the dangerous region where collision could25
happen. The integral variable p indicates the possible positions that the ego AV could appear, and26
fX is the probability density function of distribution X .27

Pc =
∫

p∈C

fX (p)dp (5)28

29
Notice that both Pc and C are affected by the complex geometric relationship of angles and30

distances between rigid vehicle bodies, P
⋃

pego, which can be statistically approximated by with31
the variance term σX and the overall traffic density k in the region, leading to a simplified formed32
of collision rate in (6).33

Pc = FC
X (k) (6)3435
Here, we assume that dFC

X (k)
dk > 0, as a higher value of traffic density means closer vehicle-36

to-vehicle distances, leading to a higher collision probability. We further assume that limk→∞ FC
X (k)=37

1 and limk→0 FC
X (k) = 0, implying that the extremely high density would almostly lead to colli-38

sions, if the speed has been unchanged, and the extremely low density would eliminate the possi-39



Li and Sun 6

bility of all collisions 1.1

The accident-inclusive traffic capacity2
As shown in (7), a roadway capacity is the maximum attainable traffic flow rate under the equi-3
librium condition, which is the product of density k and speed v. In conventional human-driven4
traffic streams, the equilibrium speed v is endogenously determined by density k, since drivers5
would slow down to avoid collision in high density scenarios, leading to a back-bending curve6
between flow rate and density in the fundamental diagram (29).7

s+ = maxkv(k) (7)89
Comparatively, the capacity of fully autonomous traffic differ from that of human-driven10

traffic in two ways. First, high density scenarios in human-driven traffic stem from high traffic11
demand. In fully autonomous traffic, as the demand consideration is excluded, the traffic density is12
directly determined by vehicle-to-vehicle distance, minimum time gap, which are parameters set13
by autonomous driving algorithms. Second, AVs could maintain high speeds even at a relatively14
high density traffic due to the more advanced driving capabilities. As a result, speed v and density15
k in (7) can be decoupled. With that, we now adjust the capacity formulation as that in (9a), where16
ka and va indicate the maximum density and speed allowed by the autonomous driving algorithm.17

s+ = kava (8)1819
Treating the robotic error as the only source of collisions, we then derive the reduced20

accident-inclusive capacity for fully autonomous traffic as follows.21

s̄ = η̄s+ (9a)22

n̄ = T s̄ (9b)2324

Es = s+− 1
τ

n̄PcEs25

=
kava

(1+ η̄T F(σX ,k)kava/τ)
(9c)26

27
In (9a), the reduced capacity s̄ is given by the reduced proportion of full capacity, η̄ . The28

reduced proportion is influenced by many factors, such as the number of lanes on the roadway.29
Accordingly, reduced flow (number of passing vehicles), n̄ could be obtained in (9b) by using30
reduced capacity times total influenced time, which is assumed to be equal to the total clearance31
time T of the accident. Modeling the AV operation as a discrete system with time step τ , the total32
number of collisions could be calculated as total number of vehicles times their collision rate at33
each study period divided by the processing time step. In the equilibrium state, the relationship in34
(9c) holds, and analytical expression of expected average capacity Es can be derived.35

CAR-FOLLOWING SPECIFICATIONS36
So far, we have established all the mathematical formulations of the conceptual model, providing a37
general method to analyze accident-inclusive capacity with AV uncertainty, regardless of the traffic38
scenarios. However, as it is impossible to use a uniform micro mathematical model to represent39

1Though the specific format of FC
X (k) is determined by the traffic conditions and the error distribution function

being specified, a sigmoid- or erfc-like function with respect to traffic density can be a good fit to the inherent properties
of error distributions.
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AVs’ movement in all traffic scenarios, we specifically study the car-following scenario in the1
following sections. The propagation of internal robotic error and its impact on collision rates will2
be established in a clearer way.3

Scenario establishment4
We first establish the car-following scenario under the following assumptions:5

1. Forward perception. Only the influence of the front vehicle is taken into account for6
the ego vehicle. Perceptual information other than measurements of the front vehicle is7
ignored. In addition, we do not specify the internal processing of the sensors, but only8
keep the perceptual information that can be used by downstream algorithms.9

2. Longitudinal control. Control of AVs can be divided into longitudinal and lateral ones.10
The former one is responsible for the acceleration and braking of the vehicle, while11
the latter one controls the steering angle. Our study focuses only on the longitudinal12
car- following and the influence of left and right traffic is excluded. In the meantime,13
the correlation between lateral and longitudinal control on curves caused by vehicle14
dynamics is also not examined.15

3. Rear-end collision. With the previous two assumptions, the reduction on traffic capacity16
is purely attributed to the rear-end collisions that occur in a single lane, and no vehicles17
in adjacent lanes will be involved in the accident. Therefore, the lane where accidents18
happened will be directly blocked, reducing its capacity to zero, and capacities on other19
lanes are deteriorated by the subsequent bottleneck phenomenon.20

Automated car-following21
The Car-following model22
Among all the versatile car-following models developed in years, we adopt the simplified Newell’s23
model (30) to mimic the car-following process of the ego autonomous vehicle. Newell model24
only requires the continuous observation of the front vehicle’s position, according to which the25
position of ego vehicle can be directly adjusted. Controls on higher-order parameters, including26
speed, acceleration, and jerk, are realized automatically. Though unrealistic from microscopic27
perspective, Newell model describes the macroscopic traffic flows appropriately. As most of the28
analyses in this section concentrate on the equilibrium state, using Newell’s model to link the traffic29
safety and efficiency is well accepted.30

Error propagation31
Assume the front vehicle starts from position x0 and drives at a constant speed v, its trajectory32
dynamic could be represented as follows:33
v f (t) = v (10a)34

x f (t) = x0 + vt (10b)3536
Equations (11)-(12), xo

f (t) represents Newell’s model with observation errors. At each time37
t, the ego vehicle makes an observation on the position of the vehicle in front. The observation is38
considered to have a Gaussian error with zero mean and a variance of σ2

x . εx. The movement of39
ego vehicle xe(t) follow the front vehicle with a delay of τ and a kept safe spacing δ . σ2

x and τ40
represent the ability of ego AV. The former represents the precision of perception, and the latter41
represents the perception processing and control response time. Consequently, the ego vehicle42
following the observed trajectory introduces randomness into its own movement.43
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xo
f (t) = x0 + vt + εx (11)1

εx ∼ N (0,σ2
x )23

xe(t) = xo
f (t − τ)−δ (12)4

= x0 + vt − vτ + εx −δ56

Expression of distance7
Combining (11)-(12), we can derive the actual distance of two vehicles at time t.8

d(t) = x f (t)− xe(t)9

= δ + vτ − εx (13)1011
Considering that the safety distance varies with speed, the safety time headway is a more12

general variable to render the degree of driving aggressiveness. Moreover, time headway is mono-13
tonically decreasing with respected to a single-lane capacity. For theses reasons, we reformulated14
the safe distance in (13) to a function of safe time headway in (14). It should also be noted that15
the distance between two vehicles is independent of time, which means, from a macro point of16
view, the observation of the distance between two vehicles at any time follows the same stochastic17
manner. Therefore, we can rebuild it as a time invariant function of ha and va in (15).18

d(t) = vh+ vτ − εx (14)1920

d(v,h) = d(t) = (h+ τ)v− εx (15)21

∼ D = N ((h+ τ)v,σ2
x )2223

So far, we have given the random motion of the ego vehicle, as shown in Figure 1. The24
Gaussian distribution from the observation error preserves, with a mean time the headway being25
h+ τ and a mean spacing being (h+ τ)v.26

Measurement of traffic safety27
In the homogeneous autonomous traffic where all vehicle length are the same, real-end collisions28
occur when the head-to-head spacing d(v,h) becomes less than the vehicle length. Adopting the29
Gaussian distribution function, equation (16) indicates the probability of collision, giving speed v30
and, time headway h, and vehicle length L. Since h and v only contribute to the mean of distance,31
equation (16) can be further simplified as a uni-variate function, denoted by (17) and (18). In the32
probability function, contribute only to the mean of distance, so that we can write the function33

A concrete relationship is shown in the Figure 234

Pc(v,h) = Fd≤L
D (v,h)35

=
∫ L

− inf
fD(v,h)dd (16)36

=
∫ L

− inf

1√
2πσx

exp(−(d − (h+ τ)v)2

2σ2
x

)dd37
38
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FIGURE 1 This figure shows the car following behavior according to the Newell model with
perceptual error. Processing time, safe headway and spacing, and actual distance are shown
in the figure.

FIGURE 2 This figure shows the probability of collision with speed and safe headway.
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FIGURE 3 This figure shows the stochasticity of the position when following a car with a
normal distribution. When the distance is less than the length of a vehicle, a rear-end collision
occurs.

dm = (h+ τ) (17)12

Pc(dm) = Pc(v,h) =
∫ L

− inf

1√
2πσx

exp(−(d −dm)
2

2σ2
x

)dd3

=
∫ L−dm

− inf

1√
2πσx

exp(− d2

2σ2
x
)d (18)4

5
With a fixed mean of distance dm, the probability of collision would remain unchanged.6

It means that to maintain the safety performance, increasing speed forces the shortening on time-7
headway, and vice-versa. However, it does not mean that the severity of collision would be the8
same, as the momentum in collision increases with respect to the traveling speed.9

∂Pc(v,h)
∂v

=
dPc(dm)

ddm

∂dm

∂v
=− h+ τ√

2πσx
exp(−((h+ τ)v−L)2

2σ2
x

) (19a)10

∂Pc(v,h)
∂h

=
dPc(dm)

ddm

∂dm

∂h
=− v√

2πσx
exp(−((h+ τ)v−L)2

2σ2
x

) (19b)11
12

Equations (19a) and (19b) further quantify the negative marginal contributions of v and h13
to the collision probability, respectively. Meanwhile, at high speed, the change rate of collision14
probability with h is greater in critical cases, indicating greater difficulty in control of h, which15
will be analyzed in more details in the discussion section.16

The accident-inclusive capacity17
Following the practice in the general model, we provide the capacity with rear-end collisions as18
follows19

Full capacity20
Ideally, as mean of headway being h+ τ , the lane capacity could be derived without the consider-21
ation of collisions.22
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s+(h) =
3600
h+ τ

(20)1
2

Reduced capacity3
Once a traffic accident occurs, a lane would be temporarily blocked, resulting in a bottleneck and4
reduced traffic capacity. Unfortunately, the microscopic dynamic characteristics of AVs under5
accidents could be complicated, which is also fall short of data. As a remedy, we adopt use the6
historical data of human driven traffic accidents shown in Table 1 from North Virginia (31) to7
quantify the impact of lane blocking on traffic capacity.8

TABLE 1 Remaining proportion of capacity when lane blocking

Number of Lanes One Lane Blocked Two Lane Blocked Three Lane Blocked
2 0.39 0.00 N/A
3 0.45 0.17 0.00
4 0.58 0.25 0.13
5 0.65 0.40 0.20
6 0.71 0.50 0.26
7 0.75 0.57 0.36
8 0.78 0.63 0.41

η
M
N =

N −M
N +M

(21)9
10

Equation (21) represents remaining proportion of capacity, ηM
N , when M lanes are blocked11

simultaneously on a road with total N lanes. For M = 1,2,3, the results of data fitting are shown12
in the Figure 4. The R-square of the three are 0.9977, 0.9691 and 0.8979 respectively.13

As trying to focus on the lane that the ego AV drives on, we ignore the situation that14
multiple lanes are blocked at the same location at the same time. Such a treatment is acceptable15
since multi-lane blocking is an event with extremely small probability.16

ηN =
N −1
N +1

(22a)17

η̄N = 1−ηN =
2

N +1
(22b)18

19

sN(h) = ηNs+(h) =
N −1
N +1

3600
h+ τ

(23a)20

s̄N(h) = η̄Ns+(h) =
2

N +1
3600
h+ τ

(23b)21
22

The remaining proportion of capacity when a single lane blocked is shown in (22a), while23
the reduced proportion is shown in (22b) accordingly. With the proportion and the full capacity,24
remaining capacity and reduced capacity could be written as (23a) and (23b) respectively.25
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FIGURE 4 This figure shows the fitting results according to the real statistical data of a tech
report from North Virginia

Collision clearance time1
Noticing that the lane blocking is temporarily, we introduce the total clearance time (TCT), during2
which the reduced capacity takes effect. As the name suggested, the total clearance time represents3
the time duration from the occurrence of the accident to the complete clearance of the accident site4
(32).5

At present, there are few literature to model the accident dealing process for fully au-6
tonomous vehicles. Intuitively, the TCT of AV collisions is positively related to their severity,7
which is positively related to the traveling speed. Since the sensors may be damaged after the8
collision, AV cannot resume operations in a short time, resulting in the existence of a minimum9
handling time. In contrast to HDVs, the identification of collision responsibility for AV accidents10
can be carried out offline and saved, due to the rich sensing information of AVs.11

We refer to the composition and typical values of TCT in a tech report in North Virginia12
(31). Incorporated with the previously-introduced features of AV collisions, we then give a simple13
and intuitive model in (24) to represent AVs’ TCT. The minimum processing time is set to 3014
minutes and the maximum one to 60 minutes. For those in between, time increases linearly with15
speed. For the scenario applicable to car following under non free flow, we only consider its linear16
segment.17

T (v) = min{54v+1800,3600}= 54v+1800|v≤33.33m/s(120km/h) (24)1819
Since the clearance time is independent of other variables in the model, this reasonable20

time assumption will not change the essence of our model nor the correlation between variables.21
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Average capacity1
Combining (23b) and (24), reduced number of passing vehicles caused by one collision could be2
calculated:3

n̄(v,h) =
s̄N(h)
3600

T (v) =
2

N +1
54v+1800

h+ τ
(25)4

5
Finally, the expectation of total number of collisions in a certain time period could be6

calculated by Pc times actual number of vehicles passing in the period and the number of state7
transitions when passing, as considering the AVs as discrete systems. Note that, although we do8
not consider other interactions between lanes, the capacity of all lanes will decrease after a collision9
in any lane, and the mean value is calculated in (23b). Therefore, when we calculate the impact of10
collisions on the lane include ego vehicle, collisions on all lanes should be considered.11

Ec(v,h) = Pc(v,h)Es(v,h)
h+ τ

τ
N (26)12

13
Combining (25) and (26), total reduced number of vehicles during the time period could14

be derived. The expectation of average passing number of vehicles could then be calculated as full15
capacity of the period minus the reduced vehicles.16

Es(v,h) = s+(h)−Ec(v,h)n̄(v,h) = s+(h)−Pc(v,h)Es(v,h)
h+ τ

τ
N

2
N +1

54v+1800
h+ τ

(27)17
18

Es(v,h) =
3600
h+τ

1+Pc(v,h)h+τ

τ
N 2

N+1
54v+1800

h+τ

19

=
3600

h+ τ + 2N(54v+1800)(h+τ)
(N+1)τ

∫ L
− inf

1√
2πσx

exp(− (d−(h+τ)v)2

2σ2
x

)dd
(28)20

21
It can be seen from (28) that the expectation of average traffic capacity is greater than 022

while less than the full capacity s+(v,h). A more concrete relationship is shown in the Figure 5.23

FIGURE 5 These two figures show the relationship between the expectation of average ca-
pacity and speed and safe headway in different angles

Four parameters of N, L, τ , σx, and two variables of v and h contribute to the final result of24
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Es(v,h). The influence of parameters on it and the optimization on variables will be analyzed and1
discussed in detail the subsequent sections.2

The general trade-off relationship of average capacity and collision probability is shown in3
Figure 6.4

FIGURE 6 This figure shows the general trade-off relationship between traffic efficiency and
safety. Each line represents a condition with certain speed or safe headway.

DISCUSSION5
Influence of parameters6
Among the four parameters contributed to the safety and efficiency of fully autonomous traffic7
shown in (16) and (28), the number of lanes N is determined by the roadway condition, while8
others are contributed from the vehicle perspective. Length L is an inherent property of design,9
while time step τ and precision σx represent the capability performance of autonomous vehicle10
hardware. In the following context, we discuss the impact of each parameter respectively.11

Number of lanes (N)12
In the car-following scenario, AVs’ collision rate due to robotic uncertainty is irrelevant to the13
number of lanes on the roadway, as shown in (16). This result is aligned with our previous as-14
sumptions, where no lateral control or side impact that captures the interaction between lanes are15
considered.16

Without doubt, the number of lanes affects the average traffic capacity Es by influencing17
the impact of accidents on traffic, with the form of N

N+1 in (27). That is, for a road with more18
lanes, the decrease of the average traffic capacity caused by accidents is more, while the decrease19
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amplitude decreases with the increase of N. This is not difficult to understand as multi-lane roads1
need to consider the average impact of bottlenecks caused by collisions happened in other lanes. In2
addition, although the average lane capacity decreases with the number of lanes, the overall road3
capacity continues to grow. In real road design and planning, this process of diminishing marginal4
benefits need to be comprehensively considered with the linear growth of cost.5

Length of vehicle (L)6
The length of the vehicle L will have an impact on safety in (16), because we set a constant head-7
way following model, and the headway corresponds to the head-to-head or tail-to-tail distance8
between vehicles. This includes the distance interval between the two and the length of the vehi-9
cle. Therefore, a longer vehicle will lead to a shorter head-to-tail distance between two vehicles,10
thereby increasing the probability of collision and reducing safety.11

However, vehicle length L has no effect on other parts of traffic capacity in (28). Therefore,12
its only influence on traffic capacity is that longer vehicles lead to higher collision probability and13
reduce traffic capacity.14

Note that, its impact on safety is not essential, but related to car-following strategies. If15
we consider a car following model that controls the tail-to-end distance between the front and the16
ego vehicle, it would have no impact on safety. However, its impact on traffic capacity remains17
negative, because a longer vehicle means a longer headway under the same safety conditions.18
Therefore, compared with vehicles with large space, compact vehicles may become more favored19
for full autonomous traffic in the future.20

Precision of sensors (σx)21
As the most important parameter to measure the perception ability of autonomous vehicles, the22
perception precision indicated by variance of perceived results σx is crucial to safety. With Gaus-23
sian distribution, as long as (h+ τ)v is set to be greater than L, lower σx would lead to fewer24
collisions. This property remains true regardless of the driving strategy being employed. Other-25
wise, the strategy would be deliberately inclined to hit the front car, setting the tail-to-end distance26
less than 0.27

Like vehicle length L, σx has no other impact on the average capacity. More precise sen-28
sors with less σx lead to safer traffic conditions and thereby allowing more efficient car-following29
strategies that contribute to greater traffic capacity and overall benefit.30

Time step (τ)31
The comprehensive time step τ includes the processing time of perceptual information, the cal-32
culation time of autonomous driving algorithms and the response time of control. Serving as the33
reaction time of an AV, it is also an important indicator to measure the ability of autonomous34
driving. The contribution of τ to the safety and capacity could be divided as two aspects.35

In the first aspect, it appears together with h as a supplement to the actual macro headway.36
The impact on safety comes from this aspect. However, τ is too small compared with h, and has37
little influence on the actual headway. In most cases, its impact on safety and capacity could be38
negligible. In addition, such influence stays on the expression, not the essence. Defining hr =39
h+ τ as the actual headway would easily eliminate it, with control of headway variable remaining40
available.41

On the other aspect, like shown in (26), τ affects the number of state changes during the42
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passing time of the discrete AV system, which is used in calculation of collision rate. Therefore,1
ignoring the influence of τ on the headway, smaller τ indicates more state changes, resulting in2
a higher collision rate as the probability of collision in each state remains same. This shows a3
negative impact on capacity.4

We find it inconsistent with intuition as a shorter processing time should indicate a better5
AV system while the advantages are not revealed. This is mostly because of the neglect of dif-6
ferential characteristics in the Newell car-following model. In some more detailed models, the7
perceptual error affects the velocity and acceleration, and the further influence of these two on the8
position would increase with τ . However, due to the complexity of stochastic nonlinear model,9
and few impact on the main content of this paper, we will continue to study it and try to cover it in10
another paper.11

Control and optimization on variables12
In the car-following scenario, we use v and h as two controllable variables. From a single vehicle13
perspective, its speed is restricted by the velocity of the car in front, making headway the only14
parameter that can be tuned. Nevertheless, once a platoon of autonomous vehicles is formed under15
the optimal headway h, their speed can be optimized as a whole to improve the overall traffic16
capacity.17

Therefore, we regard the process of controlling v and h to pursue greater traffic capacity as18
a two-stage optimization problem.19

max
v

[max
h

Es(v,h)] (29)20
21

Optimal headway of the ego vehicle22
At the first stage, we optimize h at a given speed v0.23

max
h

Es(v0,h) (30)24
25

Noticing that the numerator Es is a constant, we reformulate the maximization problem26
above as the following minimization problem (31), where the objective Sv0(h) =

2600(N+1)τ
Es(v0,h)

.27

min
h

Sv0(h) = (N +1)τh+[2N(54v0 +1800)(h+ τ)]
∫ L−(h+τ)v0

− inf

1√
2πσx

exp(− d2

2σ2
x
)dd (31)28

29
The first order condition could be written as follows:30

FOC : [v0(h+ τ)φσx(L− (h+ τ)v0)−Φσx(L− (h+ τ)v0) =
(N +1)τ

2N(54v0 +1800)
(32)31

32
Here, Φσx and φσx indicate the cumulative distribution function and the probability density function33
of Gaussian distribution N (0,σ2

x ), respectively. The right term of (32) is a small positive value34
close to 0. Considering v0(h+ τ) as d0, there is a one-to-one correspondence between h and d0.35
The left terms could be treated as a function of d0 and decreases monotonically to the limit of 036
when d0 ≥ L. Therefore, one and only one d∗

0 ≥ L exists satisfying (32). The corresponding h∗(v0)37
could then be derived, which serves as the optimal h that maximize the road capacity under speed38
of v0.39

The result of this first stage optimization could be seen in Figure 740
Note that, as v0 grows up, the right term of (32) would be smaller, leading to a larger d0 to41
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FIGURE 7 This figure shows the result of this first stage optimization. Each line shows the
process of optimization made on safe headway to maximize the capacity given a certain speed.
Red scatters indicate the optimal h and corresponding capacity at each speed.

satisfy it. This means that the optimal following distance at high speed is larger than that at low1
speed, which is consistent with intuition.2

dSv0(h)
dh

= (N +1)τ +2N(54v0 +1800)[Φσx(L− (h+ τ)v0)− v0(h+ τ)φσx(L− (h+ τ)v0)] (33)3
4

The first-order derivative of h (33) indicates that the increase of v0 will magnify the influence of5
h on the first derivative. Therefore, for h around h∗(v0) satisfying the first order condition, it will6
lead to a steeper change of the original function. That is, at higher speed, if the h is not controlled7
perfectly so as to have a deviation ∆h, the proportion of capacity loss caused by this error would8
be greater. Therefore, this is also one of the factors representing the ability of autonomous driving,9
which is worthy of further research.10

Optimal speed of the vehicle platoon11
As we discussed before, for each speed v0, an optimal h∗(v0) satisfying (32) could be derived to12
maximize the average capacity. Therefore, for another stage of optimization, we try to derive an13
optimal speed v∗ for the whole vehicle platoon where each vehicle drives with the respective h∗(v).14
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max
v

Es(v,h∗(v))1

min
v

S(v,h∗(v)) = τ +h∗(v)+
2N(54v+1800)(h∗(v)+ τ)

(N +1)τ

∫ L−(h∗(v)+τ)v

− inf

1√
2πσx

exp(− d2

2σ2
x
)dd

(34)

2

3
We try to prove its monotonicity so that the optimal value of v would be as large as limited4

by restrictions (if any). For any speed v1 larger than v0, we give a h(v1) such that:5

(h∗(v0)+ τ)v0 = (h(v1)+ τ)v1 (35)6

=⇒ h(v1)< h∗(v0),∀v1 > v0 (36)78

S(v1,h(v1)) = τ +h(v1)+
2N(54v1 +1800)(h(v1)+ τ)

(N +1)τ

∫ L−(h(v1)+τ)v1

− inf

1√
2πσx

exp(− d2

2σ2
x
)dd9

= τ +h(v1)+
2N(54v0 +1800 v0

v1
)(h∗(v0)+ τ)

(N +1)τ

∫ L−(h∗(v0)+τ)v0

− inf

1√
2πσx

exp(− d2

2σ2
x
)dd10

< τ +h∗(v0)+
2N(54v0 +1800)(h∗(v0)+ τ)

(N +1)τ

∫ L−(h∗(v0)+τ)v0

− inf

1√
2πσx

exp(− d2

2σ2
x
)dd11

= S(v0,h∗(v0)) (37)1213

=⇒ S(v1,h∗(v1))≤ S(v1,h(v1))< S(v0,h∗(v0)) (38)1415
As shown in (38), the average capacity grows up with the speed that the vehicle platoon16

drives at. Therefore, in terms of traffic efficiency and benefits, as long as the mechanical per-17
formance and control ability of vehicles satisfy, the platoon should drive at the highest available18
speed.19

The result of this second stage optimization could be seen in Figure 820
In addition, the restrictions on speed may also come from road conditions, such as the21

curvature, slope, unevenness, etc. Driving at a higher speed on an unmatched road will not only22
affect the comfort, but also seriously affect the safety, and then reduce the road capacity at the same23
time. The matching of people, roads and vehicles would be one of the problems worth discussing24
in the future research of intelligent transportation systems.25

CONCLUSION26
In this paper, we evaluated the influence of microscopic robotic errors of autonomous vehicles on27
the macroscopic traffic safety and efficiency performance. The systematic errors embedded in AV28
operations, especially in the perception module contributes to their stochastic deviation from the29
designed movement trajectory. The random movements then become of a source of collisions,30
which contributes to the accident-inclusive capacity of autonomous traffic.31

The model framework is then demonstrated in the car-following scenario, in which Newell’s32
model was used to describe AVs’ car following behaviors with observation errors, which is as-33
sumed to follow Gaussian distribution. It then allows us to derive the probability of rear-end col-34
lisions originated from uncertainties in following distances. By incorporating other factors such35
as roadway conditions and collision clearance time, the expectation of accident-inclusive traffic36
capacity is established mathematically, as a function of speed and time headway. Further discus-37
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FIGURE 8 This figure shows the result of this second stage optimization. Each line shows
capacity with same headway. Red scatters indicate the optimal capacities at each speed.
Together, they show a monotonic increase.

sion were presented, regarding the influence from number of lanes, length of vehicle, precision of1
sensors and processing time step. Moreover, we formulated a two-stage optimization problem to2
determine the optimal safe time headway for a single AV and the optimal speed of the whole pla-3
toon, intending to maximize the expected capacity. The analysis shows that the accident-inclusive4
traffic capacity is monotone to vehicle speed, while the global optimum value of safe time headway5
could be implicitly formulated, and numerically represented, given every possible speed choice.6

Our future work will continue the substantiation of the car-following scenario under robotic7
uncertainty, where more realistic high-order car-following models will be adopted to further refine8
the propagation of robotic error from perception to the motion, under which the resulted stochastic9
acceleration and velocity can be defined. Additionally, we plan to design and conduct experiments10
to reveal the distribution and nature of the perceptual errors in practice, which in turn validate con-11
clusions of the model. The richness of the proposed model framework also provides a possibility12
to investigates optimal strategies other than maximizing the average capacity, the analysis, safe13
driving strategies that guarantee traffic efficiency, economic benefits, managerial insights on AV14
regulations, will also be performed in our future studies.15
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FIGURE 9 This figure shows the general view of this two stage optimization to enlarge the
capacity with the growth of speed and corresponding decrease of headway.
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