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Abstract— Accurately identifying the intrinsic model of
Adaptive Cruise Control has the potential to enhance the pre-
diction of automated car-following behavior, helping vehicles’
decision-making and contributing to safer and more efficient
traffic flows. Moreover, white box models offer an analytical
base for evaluating the impact of automated driving functions
on macroscopic traffic dynamics, consequently aiding the man-
agement of the whole intelligent transportation system. Many
existing system identification techniques have been applied
to automated vehicles. However, most of these studies focus
on identifying parameters for models of a fixed prototype.
Their reliance on accurate estimation of state time derivatives
prevents their real applications, challenged by low sampling
rates, noisy measurements, and limited observation periods. In
contrast, the Koopman operator learning framework presents
a promising improvement that can identify the nonlinear
evolutionary properties of continuous-time systems.

In this study, we apply Koopman-based methods to data-
driven Adaptive Cruise Control model identification. Addition-
ally, as the challenge remains in establishing a practical relation-
ship between identification accuracy and sampling rate, we nu-
merically compared the performance of three Koopman-based
learning frameworks, finite-difference, Koopman-logarithm,
and a newly devised resolvent-type method, with that of a
commonly used offline simulation-based batch optimization
approach. We introduce a novel modification to the resolvent-
type method, and the experimental results demonstrate its state-
of-the-art performance, particularly in identifying the potential
existence of parametric noise at lower sampling rates.

I. INTRODUCTION

Automated Vehicles (AV) are expected to enhance traffic
safety, increase roadway capacity, and reduce energy con-
sumption [1], [2]. A prevalent example of AV functions
is Adaptive Cruise Control (ACC), which enables the ego
AV to adjust its velocity in response to the preceding
vehicle’s behavior [3]. As an automated function for the
most fundamental car-following behavior in traffic, it has
been widely implemented by many production vehicles [4].
Despite its wide adoption and promising potential, conser-
vative strategies [5], [6] and string instability [7], [8] that
hinder traffic performance are observed due to uncertainties
or design defects. The black box naturalistic of these non-
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open-source commercial AV models further challenges ac-
curate traffic predictions and utility analyses of these AVs
in an analytical way [9], [10]. The intelligent transportation
community is motivated to identify effective models that
accurately represent how these vehicles behave in practice.

Efforts have been made to identify commercial ACC
systems through offline optimization procedures to align
with recorded data [11], [12]. The characteristics of low
computational efficiency limit the scale of data it can process.
The abovementioned methods assume all ACC models to be
one specific type. Therefore, model identification degenerates
to regressing the unknown parameters to fit the empirical
data. As a result, these methods have poor accuracy when
facing different models. They are also incapable of represent-
ing nonlinear interference or uncertainty, preventing them
from restoring unstable and unsafe behavior in reality. In
addition, these methods require state time derivatives to be
accurately estimated, which may not be robustly satisfied
due to potential challenges such as low sampling rates, noisy
measurements, and short observation periods.

Comparatively, the learning structure of Koopman oper-
ators [13], based solely on observed state data snapshots,
enhances the robustness of model identification through lin-
ear least squares optimization over a dictionary that includes
nonlinear functions. Through certain transformations of the
learned Koopman operator, such as [14], [15], [16], the tran-
sient state dynamics can be obtained as a linear combination
of the dictionary functions. Furthermore, this indirect system
identification framework does not require the estimation of
time derivatives and can potentially circumvent the need for
high sampling rates and long observation periods.

The Koopman-based identification approach has been suc-
cessfully used in modeling discrete-time models for AVs,
demonstrating practical applications of Model Predictive
Control (MPC) [17], [18], [19]. However, they fail to identify
the transient acceleration dynamics for ACC without the
aforementioned transformations of the learned Koopman
operators. Though challenges remain in establishing a prac-
tical relationship between identification accuracy and the
sampling rate, various transformation methods that encode
only discrete-time observation data, such as finite-difference
method (FDM) [14], Koopman-logarithm method (KLM)
[15], and newly proposed resolvent-type method (RTM)
[16], have been investigated with theoretical guarantees of
approximation soundness.

Considering all the above, in this work, we innovatively
apply car-following physical laws and leverage Koopman-
based data-driven techniques along with the three transfor-

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.



mation methods for ACC model identification. To better un-
derstand how data can be processed to learn the continuous-
time ACC dynamical system with improved accuracy and
data efficiency, we conduct simulation experiments and nu-
merically compare the performance with a commonly used
offline simulation-based batch optimization approach. We
claim the overall advantages of Koopman-based learning
techniques and the state-of-the-art capability of the RTM
method. We also hope that the simulation results will shed
light on processing real experimental field data in the future
and call for more studies to explore the applications of this
technique that achieves white box ACC models.

II. PREMISE

In this section, we introduce one important notation used,
and briefly review common models assumed for ACC vehicle
dynamics, then discuss a standard simulation-based optimiza-
tion method used to benchmark the model parameters.

A. Notation

We denote by ∥ · ∥ the Euclidean norm. For a finite-
dimensional matrix A, we denote by A† the pseudo inverse,
and use the Frobenius norm ∥A∥F as the metric. Let C(Ω)
be the set of continuous functions with domain Ω. The
uniform (sup) norm of C(Ω) is denoted as ∥ · ∥∞. We
denote the set of continuously differentiable functions by
C1(Ω). For any positive integer P , we denote by [P ] the
set {0, 1, · · · , P − 1}. The identity operator is denoted by I,
whereas an N ×N identity matrix is denoted by IN×N .

B. Model Review

Physics-based models for two vehicles, where a lead
vehicle drives at a given velocity profile with the test ACC
vehicle following behind, describe the relationship between
speed deviations, the distance gap, and the following vehi-
cle’s acceleration. We express the dynamics in the following
abstract form:

d

dt

[
s(t)
v(t)

]
=

[
u(t)− v(t)

fθ(s(t), v(t), u(t))

]
(1)

where s is the distance gap, v is the velocity of the following
vehicle, and u denotes the velocity of the preceding vehicle.
The mapping fθ : R3 → R is parameterized by θ. In this
form, we treat u as the external input variable assumed to
be given. The equilibrium of (1) occurs when both vehicles
travel at the desired speed v̄, whence u(t) = v(t) ≡ v̄ and
s(t) ≡ s̄ with a desired distance gap s̄. Therefore, it follows
that fθ(s̄, v̄, v̄) = 0.

Suppose the input u is designed as u = κ(s, v, u) for some
Lipschitz continuous function κ. Then, (1) can be rewritten
as an autonomous system

ẋ(t) = F (x(t)), x(0) = x0 ∈ X , t ∈ [0,∞), (2)

where x = [s, v, u]T is the state variables, x0 =
[s0, v0, u0]

T represents the initial condition, F (x) = [u −
v, fθ(s, v, u), κ(s, v, u)]

T , and X ⊆ R3 represents a bounded
and invariant domain for (s, v, u). The forward flow map

(solution map) is denoted as x : [0,∞) × X → X , which
satisfies 1) ∂t(x(t, x0)) = F (x(t, x0)), 2) x(0, x0) = x0,
and 3) x(s,x(t, x0)) = x(t + s, x0) for all t and s.
Such an abstract autonomous system form favors system
identification methods.

Below, we summarize commonly used realizations of fθ.
1) Constant Time Headway Relative Velocity Model:

Among the numerous studies exploring the modeling of ACC
vehicles using car-following models, a common variation is
the Constant Time Headway Relative Velocity (CTH-RV)
model. In this model, fθ(s, v, u) = α(s−η−τv)−β(u−v)
with θ = [η, α, β, τ ]T , where η is the desired space gap
when the vehicles are stop; α and β represent the gain on the
constant time headway term and the relative velocity term,
respectively; τ = s̄−η

v̄ represents the time gap at equilibrium.
This linear model is a simplification of the proprietary control
logic and complex vehicle dynamics of real ACC vehicles.
The quality of fit can decrease for some specialized vehicles,
such as hybrid vehicles [11], [20].

2) Nonlinear Models: Many models account for nonlinear
effects [21], [22], [23] . Due to page limitations, we present
only the GHR model [24] here.

The acceleration of the following vehicle calculated using
the GHR model is formulated as: fθ(s, v, u) = cvδ(u −
v)s−l, where θ = [c, δ, l]T are model parameters. The model
also recognizes the potential to incorporate a delay effect due
to human reaction. However, to better illustrate the ideas in
this paper, we do not take this effect into account.

C. Benchmark System Identification Algorithms

We present the following commonly used method for
system identification that relies on known physical laws but
have unknown parameters.

The Offline Batch Optimization (OBO) method
estimates parameters by minimizing the root mean
squared error (RMSE) between the actual time-series data
{x(tk, x(m))}Γk=0 and the estimated data {x̂(tk, x(m))}Γk=0

up to time T . Here, each x(m) represents an initial condition,
and a total of M initial conditions are needed. The time
tk = kT/Γ corresponds to the sampling instances, with Γ
representing the sampling rate. The formula is given as:

EF =

√√√√ 1

MΓ

Γ∑
k=1

M−1∑
m=0

∥x(tk, x(m))− x̂(tk, x(m))∥2. (3)

The identification can be directly addressed using
simulation-based optimization with standard descent-based
methods. It is important to note that this optimization prob-
lem is nonlinear with respect to the decision variables [20],
including the state and model parameters, and may also be
non-convex depending on the car-following model used. As
a result, the computational time is usually long.

III. KOOPMAN-BASED SYSTEM IDENTIFICATION
METHODS

A Koopman operator is a linear, infinite-dimensional op-
erator that governs the evolution of continuous scalar test



functions h : X → R. Let us now consider the normed
continuous function space (C(X ), ∥ · ∥∞) of all such h.

Definition 1: The Koopman operator family {Kt}t≥0 of
system (see Equation (2)) is a collection of Koopman oper-
ators Kt : C(X ) → C(X ) defined by:

Kth = h ◦ x(t, ·), h ∈ C(X ) (4)

for each t ≥ 0, where ◦ is the composition operator. ⋄
Note that Koopman operators form a semigroup and

satisfy 1) K0 = I, and 2) Kt ◦ Ks = Kt+s for every
t, s ≥ 0. In this view, for unknown systems, one can gather
flow data of x(τ, ·) and learn Kτ for some fixed τ . Then,
one can predict the data of h(x(kτ, ·)) for any k ∈ N
and h ∈ C(X ), including the discrete flow of the ODE
system itself. This knowledge can be integrated with discrete-
time synthesis strategies to design controllers that guarantee
vehicle behaviors at those discrete-time observation points.

However useful these applications may be, they lack
guarantees for performance at moments other than those
discrete-time points in continuous systems, especially when
safety-critical operational requirements are considered. In
addition, for the specific application of understanding the
underlying automation logic of an ACC vehicle, the transient
transitions need to be comprehensively analyzed. To capture
dynamical behaviors related to the transient transitions, one
needs to learn the infinitesimal generator of the system.

Definition 2: The (infinitesimal) generator L of {Kt}t≥0

is defined by Lh(x) = limt→0
Kth(x)−h(x)

t , where the test
functions should be within the domain of L, defined as
dom(L) =

{
h ∈ F : limt→0

Kth(x)−h(x)
t exists

}
. ⋄

Supposing that the test functions are continuously dif-
ferentiable, the generator is explicitly given by Lh(x) =
∇h(x) · F (x) for all h ∈ C1(X ) [25]. For the purpose of
system identification, we define pj : X → R, x 7→ xj , as
the projection function to the jth dimension. Then, Lpj(x) =
∇pj(x)·F (x) = Fj(x) for all j ∈ {1, 2, 3}. Since F1 and F3

are known, we only need to utilize the generator information
to obtain Lp2 = fθ for the ACC system.

Since Koopman-based methods can enhance approxima-
tion capabilities through the rich representability of the
dictionary functions, which relaxes prior beliefs about the
prototypical forms of the model, we will review two fre-
quently used connections between L and {Kt} and a recently
developed approach in the following subsections. Such a con-
nection is also intended for data-driven learning purposes. In
contrast to the predictability of discrete-time flows achieved
through learning Koopman operators, identifying F (x) for
continuous-time systems requires utilizing the discrete-time
data of {Kt} to represent L.

Note that the solutions to the above problem can be
improved by increasing the observation frequency. But in
practice, such a frequency is limited. Therefore, the primary
focus will be on how these Koopman-based methods can po-
tentially reduce the frequency of observation data collection.

A. Finite-Difference Method

Finite-difference method (FDM) is a numerical technique
used to solve differential equations by approximating deriva-
tives with finite differences. In the context of Koopman-based
approximations, the finite-difference expression, given as

L ≈ Kτs − I

τs
, τ > 0, (5)

follows Definition 2 without taking the limit.
Through this approximation scheme of the time derivative,

it can be anticipated that the precision heavily depends on
the size of τs [14], [26], [27].

B. Koopman-Logarithm Method

The Koopman-Logarithm Method (KLM) leverages the
expression Kτs = eLτs for bounded linear L, and uses

L ≈ log(Kτs)

τs
, τs > 0 (6)

as the converse representation of the generator [15], based
on the knowledge of Kτs . A potential advantage of the KLM
is that it is more tolerant of variations in sampling rate
compared to the FDM.

Two issues need to be paid attention to when applying
this method: 1) Such an expression requires the existence of
an invariant function subspace of C(X ) where the generator
L, when restricted to it, is bounded; 2) The sampling rate
should be sufficient to ensure that the operator logarithm is
not multi-valued.

Recent studies [28], [29] have investigated the sufficient
and necessary conditions under which the KLM can guar-
antee learning accuracy. Although the results are sound,
these conditions are less likely to be verifiable for unknown
systems unless additional side information is provided.

C. Resolvent-Type Method

Recent research [16] has proposed the resolvent-type
method (RTM) to address the proper converse representation
of L based on {Kt}, which also has the potential to relax
the sampling rate requirements. Unlike the FDM and KLM,
which only depend on τs, the RTM approximates L using
two tunable parameters, as follows. For sufficiently large
λ > 0 and τs > 0,

L ≈ λ2Rλ,τs − λ I, (7)

where Rλ,τs : C(X ) → C(X ) is defined as:

Rλ,τsh(x) =

∫ τs

0

e−λsKsh(x) ds. (8)

Note that as τs → ∞, Rλ,τs → Rλ uniformly and expo-
nentially, where Rλ =

∫∞
0

e−λsKsh(x) ds is the resolvent
operator of L. In this sense, (7) truncates the tail of the
resolvent integral in favor of adapting to a finite amount of
data. In contrast to KLM, the RTM does not require the
boundedness of L, and the approximation accuracy has been
thoroughly investigated in [16].



IV. DATA-DRIVEN TECHNIQUES

In this section, we introduce the data-driven adaptation
of the previously introduced three Koopman-based system
identification methods. We also propose a modified version
of RTM, aiming to relax the sampling rate requirements.

A. Finite-Difference and Koopman-Logarithm Method

Observing that the expressions for L in FDM and KLM
rely on just one moment of the Koopman operator Kτs , the
data-driven versions of these methods are divided into two
steps: 1) learning Kτs ; 2) transforming the learned Kτs based
on (5) and (6), respectively.

The objective of the data-driven approximation of Koop-
man operators [15], [30], [31] is to obtain a fully discretized
version, denoted K, of Kτs based on training data. This also
relies on the selection of a discrete dictionary of continuously
differentiable test functions, which is denoted by ZN (x) =
[z0(x), z1(x), · · · , zN−1(x)]

T for N ∈ N. Then, the approx-
imation is achieved in a way that Lh(·) ≈ ZN (·)(Liw) for
h(x) = ZN (x)w and for any i ∈ {FDM,KLM}.

The training data is obtained in the following way. By
randomly sampling M initial conditions {x(m)}M−1

m=0 ⊆ X
and fixing a τs, we stack the features into X, such that:

X = [ZN (x(0)),ZN (x(1)), · · · ,ZN (x(M−1))]T (9)

and the labels into Y:

Y = [ZN (x(τs, x
(0)), · · · ,ZN (x(τs, x

(M−1))]T . (10)

After obtaining the training data (X,Y), we can find K
by K = argminA∈CN×N ∥Y − XA∥F . The K is given in
closed-form as K =

(
XTX

)†
XTY [30].

The data-driven approximation for L based on FDM and
KLM should be a quick modification using K: 1) FDM:
LFDM = (K− IN×N )/τs; 2) KLM: LKLM = log(K)/τs.

B. Resolvent-Type Method

The RTM relies on integrals for approximation, which
require intermediate trajectory data for evaluation. In [16],
the integrals are evaluated using an augmented initial value
problem (IVP) related to Equation (2), where the evaluation
points within [0, τs] are implicitly assigned and are not
accessible for processing real data.

In this subsection, we first modify the evaluation algorithm
for (8) as described in [16] and organize the data as follows.
For a fixed τs and λ, the stack of features X is the same
as Equation (9). To numerically evaluate the integral in
Equation (8), one needs to select the number of evaluation
point Γ within [0, τs], and stack the data in the following
intermediate matrix for m ∈ {0, 1, · · · ,M − 1}:

J(m) =λ2[ZN (x(0, x(m))), · · · , e−
λkτs

Γ ZN (x(
kτs
Γ

, x(m))),

· · · e−
λτs
Γ ZN (x(τ, x(m))]T .

(11)

Denote Gλ
[0,τs]

(v), or simply G(v) for brevity, as the
Gauss–Legendre quadrature based on the vector of points
v within [0, τs], and denote J(m)[:, j] by the jth column of
J(m). The stack of labels is given by Yλ = Iλ−λX, where:

Iλ =



G(J(0)[:, 0]) · · · G(J(0)[:, N − 1])
...

. . .
...

G(J(m)[:, 0]) · · · G(J(m)[:, N − 1])
...

. . .
...

G(J(M−1)[:, 0]) · · · G(J(M−1)[:, N − 1])

 . (12)

Then, Lλ
RTM =

(
XTX

)†
XTYλ is the solution to

argminA∈CN×N ∥Yλ −XA∥F . Furthermore, supposing that
Γ and λ are selected such that each entry in Equation (12) can
be precisely computed, we have Lh(·) ≈ ZN (·)(Lλ

RTMw)
for any h(x) = ZN (x)w.

Empirically, for larger λ, the numerical integration needs
a larger Γ, which represents higher sampling rate. To avoid
this, one can rely on the (first resolvent) identity [(λ−µ)Rµ+
I]Rλ = Rµ to express L. Based on (7), a modification of
the above identity yields [Rµ,τs(λ− µ) + I]L ≈ λµRµ,τs −
λ I . For the data-driven adaptation, supposing Iµ has been
evaluated for a small µ, we have that Lλ

RTM = A†B, where:

A =
λ− µ

µ2
Iµ +X, and B =

λ

µ
Iµ − λX. (13)

V. EXPERIMENTS

In this section, we test the performance of three Koopman-
based methods and compare them to offline batch opti-
mization using synthetically generated data. This numerical
simulation aims to illustrate the potential of Koopman-
based methods to accurately recover true system transitions,
particularly in the presence of parametric noise.

Synthetic data is created by selecting physical models and
a predefined preceding vehicle velocity profile. Letting tk =
kτs/Γ, the time-series data {x(tk, x(m)}Γk=0 of velocity and
space gap are then generated using a numerical IVP solver
up to time τs under sampled initial conditions

{
x(m)

}M−1

m=0
.

To better illustrate the idea, the data is based on the
following models:

1) CTH-RV with η = 0[m], α = 0.08[m/s2], β =
0.12[m/s2], and τ = 1.5[s];

2) CTH-RV with polynomial parametric noise 0.001(s−
τv)2 and all other parameters remain unchanged;

3) Non-polynomial GHR with c = 0.79, δ = 0.08, l = 0,
and a polynomial parametric noise 0.001(s− 1.5v)2.

The preceding vehicle’s velocities for operator train-
ing are set as constants (equivalently, κ ≡ 0 as in
(2)) {2, 3.33, 4.67, 6, 7.33, 8.67, 10, 11.33, 12.67, 14}[m/s].
We sample 10 initial conditions s0 uniformly from [2, 20]
([m]), as well as 10 for v0 uniformly from [2, 14] ([m/s]).
Along with the preceding vehicle’s velocity profile, the total
number of initial conditions is M = 103.

The parameters are chosen based on [8], [32], whereas
the noise term is artificially provided. Note that the nominal
models in Section II are arguably accurate enough to reflect
the behaviors of the following car, and evidence from [32,
Table III (IDM)] shows that the parameters fitting the model
do not make logical sense. Therefore, the purpose of the
simulation leans more towards using data to identify or



approximate the transition in the following car’s velocity
profile rather than providing true physical meanings.

For Koopman-based methods, we choose monomial dic-
tionary functions {spvqul, p ∈ [P ], q ∈ [Q], j ∈ [J ]}. Under
this setting, recalling Definition 2, we have that fθ(s, v, u) =
Lv. For the OBO, the parameter values that yield the lowest
RMSE (see Equation (3)) across 100 runs are selected as the
optimal parameter set for the model.

Two measurements are used to demonstrate the error of
identification. For any model and any method, one can use
the RMSE of the flow data, EF , as defined in (3). For
polynomial models, we can simplify by using the RMSE
of the weights assigned to each monomial basis

Ew :=

√√√√ 1

PQJ

P−1∑
p=0

Q−1∑
q=0

J−1∑
j=0

|wp,q,k − ŵp,q,k|2. (14)

A. CTH-RV

The significance of this model’s simulation is twofold: 1)
the linear model simplifies the parameters and demonstrates
its ability to fit by roughly simulating the real trajectories of
ACC-equipped vehicles.; and 2) the precision of the numer-
ical quadrature (8) in the RTM can be roughly estimated by
the linear growth rate.

1) Test of Parameters of the RTM: We first test how the
parameters µ, λ, and τs impact the precision of the RTM. In
the experiments, we set P = Q = J = 3 and λ = 1e8. We
first use µ to evaluate the integral under the sampling rate
100 Hz (equivalently, Γ = 100), and then use (13) to learn
the generator. In Fig. 1, the relationship between τs, µ, and
Ew (log10-scale) is illustrated.

Under a sampling rate of 100 Hz, the highest accuracy
(≈ 1e−7) is achieved at µ ≈ 2. As τs decreases, accuracy
downgrades, and the value of µ needed for optimal accuracy
evaluation increases. A similar pattern is observed for the
cases of 10 Hz and 2 Hz (see Fig. 2). Furthermore, the
overall accuracy decreases as the sampling rate decreases,
while still maintaining a relatively high level of accuracy.
These experiments also empirically provide insight into how
to set the parameters (τs, µ, λ) for the RTM and can be
utilized with real data.

The following parameters are used for the rest of this pa-
per: for 2, 10, and 100 Hz sampling rate, we set (τs, µ, λ) =
(25, 0.35, 1e8), (15, 1, 1e8), and (10, 10, 1e8), respectively.

2) Comparisons Among All Methods: We compare three
Koopman-based methods with the OBO. For Koopman-based
methods, we choose monomials by setting P = Q = J =
3. The RMSE of weights (Ew) are reported in Table I. In
general, KLM and RTM perform better than the other two
methods and can still achieve relatively high accuracy as the
sampling rate decreases.

B. CTH-RV with Polynomial Parametric Noise

In this scenario, we first compare the performance among
all Koopman-based methods. The results are reported in
Table II. Note that, in this case, the exact number of
monomial functions required is (P,Q, J) = (3, 3, 2). When
(P,Q, J) less than this number, the dictionary is insufficient

TABLE I
RMSE OF WEIGHTS (Ew ) FOR CTH-RV

Approaches 100 Hz 10 Hz 2 Hz
FDM 2.07e−3 2.07e−2 8.53e−2
KLM 5.76e−6 5.78e−6 5.84e−5
RTM 4.96e−7 1.30e−6 4.36e−5
OBO 3.46e−3 2.46e−3 5.96e−3

to represent the true function fθ exactly, resulting in distorted
assigned weights and less accuracy. The results demonstrate
that the RTM has a much better overall ability to identify
parametric noise, regardless of the sampling rate.

The RMSE of weights for the OBO are as follows: Ew =
0.041, 0.040, and 0.041 under 100, 10, and 2 Hz sampling
rate. When the true model is perturbed, parameter fitting
based on a priori believed model is not advisable.

C. GHR Model with Parametric Noise

We use the last example to examine the ability of
Koopman-based methods in identifying non-polynomial fθ.
Additionally, to streamline the examination, we intentionally
add polynomial parametric noise to perturb the system,
intending to demonstrate that data fitting using the nominal
model with OBO does not possess robustness.

In this experiment, we use a 100 Hz sampling rate for
all the identification methods. In addition, for Koopman-
based methods, in order to better approximate the non-
polynomial function fθ, we opt to use a relatively large
number of dictionary functions with (P,Q, J) = (4, 4, 4).
For the OBO method, we set the initial guess of parameters
to be (c0, δ0) = (0.8, 0.08), which are close enough to the
nominal model without noise. The final optimized parameters
are (c, δ) = (0.6, 0.06).

After learning the model, a simulation of v and s is pre-
sented in Fig. 3. The preceding vehicle executes a sinusoidal
velocity profile with u(t) = 0.8 sin(3t). It is shown that the
FDM and RTM inferred models can reproduce the actual
velocity more accurately, while the OBO generates a larger
deviation. The KLM fails to generate the same shape of
the velocity pattern. It is shown that the FDM drifts away
from the actual data for a long-term run, while the RTM
reproduces it more accurately. The RMSE of flow for each
method is reported in Table III.

VI. CONCLUSION

In this paper, we have developed a modified resolvent-type
method (RTM), a Koopman-based data-driven technique, for
system identification of ACC. We compared the identification
performance with two other Koopman-based methods and
one commonly used offline batch optimization for parameter
estimation with a priori-believed model. Through simulation
experiments, it has been demonstrated that the newly pro-
posed RTM has the best overall performance, considering
prediction accuracy under parametric noise.

Though not presented in this paper, utilizing less biased
neural network dictionary functions would be a straightfor-
ward extension of this study, potentially leading to better



Fig. 1. Empirical Testing of Relations between Parameters for the RTM under 100 Hz Sampling Rate.

Fig. 2. Empirical Testing of Relations between Parameters for the RTM under 10 and 2 Hz Sampling Rates.

TABLE II
RMSE OF WEIGHTS (Ew ) FOR CTH-RV WITH POLYNOMIAL PARAMETRIC NOISE

Approaches Sampling Rate (P,Q, J)
= (2, 2, 2)

(P,Q, J)
= (3, 2, 2)

(P,Q, J)
= (3, 3, 2)

(P,Q, J)
= (3, 3, 3)

(P,Q, J)
= (4, 3, 3)

(P,Q, J)
= (4, 4, 3)

(P,Q, J)
= (4, 4, 4)

FDM 100 Hz 0.620 0.271 2.07e−3 3.70e−2 2.19 2.54 2.93
KLM 100 Hz 0.406 0.190 8.20e−3 2.17e3 6.79e3 1.04e4 1.30e4
RTM 100 Hz 0.615 0.275 5.69e−7 4.18e−7 4.30e−7 6.72e−7 1.16e−6

FDM 10 Hz 0.624 0.278 2.07e−2 4.47e−2 2.19 2.54 2.94
KLM 10 Hz 0.614 0.267 2.70e−4 1.72e2 7.48e2 9.99e2 1.24e3
RTM 10 Hz 0.551 0.283 1.05e−6 1.32e−6 1.10e−6 1.40e−6 1.76e−6

FDM 2 Hz 0.650 0.320 0.105 0.133 2.19 2.54 2.94
KLM 2 Hz 0.590 0.258 1.18e−4 35.13 1.49e2 1.19e2 2.50e2
RTM 2 Hz 0.433 0.202 1.61e−4 1.63e−4 1.41e−4 1.60e−4 1.82e−4

TABLE III
RMSE OF FLOW USING GHR MODEL

Approaches RMSE of Distance Gap RMSE of Velocity
FDM 4.24e−2 0.448
KLM 0.564 2.79
RTM 5.76e−3 1.10e−2
OBO 0.11 11.69

expressibility of more general models. In general, RTM has
great potential for identifying slight parametric noise. The
comprehensive empirical testing of the tunable parameters

for RTM operator learning can also be applied to real ACC
vehicle data, provided the underlying physical laws govern-
ing car-following behavior. Utilizing real data to identify
acceleration logic for commercial automated vehicles will be
pursued as future work. Additional work using this system
identification scheme includes addressing filtering problems
based on observed data, which provides the potential to
identify additive stochastic noise within the model.
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