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Abstract— Connected and Automated Vehicles (CAVs) have
the potential to enhance traffic safety and efficiency. In contrast,
aligning both vehicles’ utility with system-level interests in
scenarios with conflicting road rights is challenging, hindering
cooperative driving. This paper advocates a game theory
model, which strategically incorporates deceptive information
within incomplete information vehicle games, operating under
the premise of imprecise perceptions. The equilibria derived
reveal that CAVs can exploit deceptive strategies, not only
gaining advantages that undermine the utility of the other
vehicle in the game but also posing hazards to the overall
benefits of the transportation system. Vast experiments were
conducted, simulating diverse inbound traffic conditions at an
intersection, validating the detrimental impact on efficiency
and safety resulting from CAVs with perception uncertainties,
and employing deceptive maneuvers within connected and
automated transportation systems. Finally, the paper proposes
feasible solutions and potential countermeasures to address the
adverse consequences of deception in connected and automated
transportation systems. It concludes by calling for integrating
these insights into future research endeavors and pursuing to
fully realize the potential and expectations of CAVs in enhancing
the whole traffic performance.

I. INTRODUCTION

Autonomy and connection are two important directions
of future intelligent vehicle development [1], [2]. Connected
and Automated Vehicles (CAVs) can communicate with other
traffic participants, sharing perception and control informa-
tion [3], [4]. This ability enables intelligent vehicles to have
a perception ability beyond their own range, as well as to
understand the intentions of other vehicles, which has the
potential to achieve cooperative driving [5]. Despite ongoing
debate regarding the societal benefits of Autonomous Vehi-
cles (AVs) as compared to Human-Driven Vehicles (HDVs)
[6], CAVs are widely acknowledged for their potential to
enhance traffic safety, energy efficiency, and mobility sig-
nificantly. This is attributed to their theoretical capability to
eliminate human errors and facilitate cooperative operations.

Some traffic scenarios have been deeply explored, such
as cooperative car-following [7]. Multiple adverse issues,
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Fig. 1. CAV deception behavior in typical conflicting scenarios.

such as perception noise, physical errors, and communication
delays in CACC, have been considerably addressed [8].
However, even with perfect communication, CAV also have
the potential to become unprecedented disruptors in the
future owing to their vulnerability to cyber threats, hack-
ing, and misinformation [9]. Their use by various entities
could lead to deceptive practices aimed at seeking selfish
or harmful objectives, especially in complex scenarios like
intersections [10], on-ramps [11], and merging lanes. These
scenarios, unlike CACC, present conflicting utilities, compli-
cating optimal strategies. Negotiation-based game theory has
effectively addressed issues. However, vehicle interactions
are not always harmonious and cooperative, especially when
the interests of different vehicles clash or local optima
conflict with overall benefits, making competition inevitable.
Vehicles may use deceptive strategies in various scenarios,
prompting other vehicles to become confused and adjust their
strategies, thereby gaining advantages, as shown in Fig. 1.

Without vehicle connectivity, decisions rely solely on
single-vehicle perception. Inter-vehicle communication al-
lows for decision-making based on shared signals and ob-
servations, highlighting the importance of balancing trust
and deception. Deception modeling in real-world conflicts is
complex, with game-theoretic and learning-driven methods
being the primary approaches in existing literature [12].
Game theory is critical for analyzing decision-making in
interactive conflicts involving AVs [13]. It studies deception
in games where actions or outcomes are reported to other
players, often through signaling games where signals can be
honest, deceptive, or absent. In multi-vehicle conflicts, sig-



naling games model defensive deceptions aimed at mislead-
ing attackers [14]. Carroll et al.[15] employed deceptive sig-
naling games to study network defense, focusing on scenarios
where attackers discern system types, forcing defenders to
send signals, deceptive or genuine. Their findings suggest
deception as a strategic equilibrium for defenders, often
more effective than truthful signals. Yavin et al. [16] inves-
tigated pursuer-evader deception, analyzing strategies based
on player positions and distances, with the evader disrupting
signals to the pursuer. The goal was to identify the most
effective pursuit strategies against misleading or incomplete
information. Modeling interactive decision conflict through
game theory can clarify multi-agent interactions through
mathematical proofs and simulation analyses, improving
decision-making transparency and application transferability
[17]. However, the complexity and uncertainty of networks
and game theory’s reliance on common sense assumptions
present challenges in real-world applications.

Recent studies have integrated learning-based defensive
deception techniques, such as machine learning (ML) and
reinforcement learning (RL), for creating decoys and fab-
ricating information to mislead attackers [18]. ML-based
approaches offer improved predictions about attackers or
create highly similar deceptive objects using extensive avail-
able data [19]. Nadeem et al. [20] employed machine
learning algorithms to train on historical network attack
data in software-defined networks, developing high-quality
honeypots. This ML-based method aims to identify potential
malicious connections and attack destinations. Furthermore,
RL has been applied to study defensive deception games. Uti-
lizing RL or Deep RL [21], its reward function is employed
to formulate players’ utility functions, enabling agents to
determine optimal strategies similar to other attack-defense
games. In RL-based game formulations, players employ RL
to ascertain optimal strategy, where the RL reward function
considers gains and losses based on the player’s beliefs
about the opponent’s actions. Nguyen et al. [22] proposed an
embedded RL-based online deception method, considering
the dynamic alteration of attacker strategies and tactics in
response to defensive actions while maintaining a balance
between availability and security. Learning-based methods
address insufficient interaction between a single attacker and
defender, extending to multi-agent interaction processes. At
the same time, the accuracy of learning-based deception tech-
niques depends on the availability of data on the interaction
processes of conflicting agents. In practice, such data is often
inaccessible to defenders, significantly limiting the training
and exploration of learning-based approaches.

In the intricate decision-making games of CAVs, the
strategic use of deceptive information can have profound
effects. Considering imprecise vehicle perceptions, this paper
strategically incorporates deceptive information into CAV
interactions at unprotected intersections. Key contributions
include:

1) Utilizing game theory, analyze the effect of incomplete
information, in scenarios of perception uncertainty, cooper-
ative connection, and deception on CAV decision-making

games, emphasizing the negative impact of deception on
overall traffic.

2) Highlight how CAVs with societal attributes and
human-like deceptive behaviors aim to maximize their utility,
ultimately leading to deviation from optimal actions by all
traffic participants.

3) Simulation experiments show that deception by a CAV
harms system benefits, even worse than AV solely decision-
making scenarios, and emphasize the need for robust strate-
gies to mitigate the adverse effects of deceptive tactics.

The remaining part of this paper is arranged as follows.
Section II describes the focused scenario and the game
theory behind it. In Section III, we analyzed the impact of
perception error, connectivity, and deceptive behavior on the
game and its equilibria. In addition, Section IV introduces
the simulation experiments and discussions on the results.
Finally, Section V concludes the paper.

II. SCENARIO AND MODEL

Our research focuses on the scenario where two vehicles
compete for the right to pass through the same roadblock,
typically occurring at an unprotected signal-free intersection,
as shown in Fig. 2.

Fig. 2. A typical conflicting intersection where two vehicles compete
for passing. That they do not give way to each other can lead to unsafe
collisions.

To eliminate interference and focus on the main issue, we
assume that both road approaches have the same grades and
width (L). The two CAVs participating in the game are con-
sistent in size (length l), power mobility, perception ability,
etc., except for their strategies. The actual distances between
the vehicle heads and the entrances of the intersection are
dA (for vehicle A) and dB (for vehicle B), respectively.

We use a single decision process to represent the game
between two CAVs. This allows us to avoid planning com-
plex speed changes and precise acceleration control. The
currently popular reservation-based intersection management



strategy for multiple vehicles also has a similar approach
[23], but without consideration of deception. Each approach
has a decision point with the same distance (see Fig. 2) from
the intersection, similar to the decision point set by FHWA
for human drivers in MUTCD, where each incoming CAV
makes a single decision when it reaches.

Two decisions (Σ) can be planned for each vehicle (N =
{A,B}), keeping speed to pass or slowing down to yield:

Σ
A = {pass, yield} (1a)

Σ
B = {pass, yield} (1b)

We consider both safety and efficiency in the game pay-
offs:

U = S+E (2a)

S =

{
0, risk-free

−R, risky
(2b)

E =
x
v
− tc (2c)

The utility (U) of each agent consists of two parts. S stands
for safety, which gives a large negative number representing
a penalty (−R) to each vehicle causing a collision risk (i.e.,
two CAVs occupying a conflict block simultaneously). On
the other hand, the gap between the expected time of entering
the intersection (x/v) and the actual time of entering the
intersection (tc) at speed v is employed as the efficiency term
(E) in utility.

Similar to a simple chicken game, this game will produce
four different playoffs, as shown in Table I.

TABLE I
NORMAL-FORM GAME PLAYOFFS OF TWO AGENT CAVS COMPETING

FOR THE RIGHT OF WAY AT AN INTERSECTION.

(UA,UB) A: Pass A: Yield
B: Pass (−R,−R) ( dA

v − L+dB+l
v ,0)

B: Yield (0, dB

v − L+dA+l
v ) (−D,−D)

In a conflict, there is a restriction on the difference of
distances between the two vehicles and the entrances of the
intersection (see (3)), which ensures the negativity of E.

|dA −dB|< L+ l (3)

When both CAVs choose to pass, each vehicle enters the
intersection at the same speed v, which does not cause a
delay. However, the presence of two vehicles at a conflicting
intersection can lead to a significant collision risk. Therefore,
both agents receive a large negative utility as penalties for
this outcome.

Alternatively, when vehicle A chooses to pass and vehicle
B decides to yield, there will be no delay and no safety risk
for passing through the intersection, leading to a zero utility
for vehicle A. On the other hand, vehicle B has to wait until
vehicle A drives entirely out of the intersection, which results
in a time delay ( dB

v − L+dA+l
v ), though no safety penalty is

given to it. Oppositely, when vehicle A decides to give way

to vehicle B, it suffers from a time delay ( dA

v − L+dB+l
v ) but

no safety penalty either.
The special situation is when both agents decide to yield.

In order to maintain the completeness of the game model, a
moderate negative number (−D) is given to both CAVs as
the playoff. The total utility of the intersection (U tot =UA+
UB) will be much greater than the penalty for collision risk
but less than the shortest delay time for decisive decision-
making, shown as (4). It may be subject to change in different
situations.

−R ≪−2D <−L+ l −|dA −dB|
v

(4)

This yield decision by both CAVs resulted in further
gameplay closer to the intersection and at lower speeds,
causing delays for both sides. However, we will not further
discuss and design the playoff for this situation in detail, and
the reasons will be explained in the following sections.

III. GAME ANALYSIS

For CAV decision-making in an ideal situation, interacting
vehicles know ego and each other’s precise and accurate
positions. Control can be implemented through specific traf-
fic rules, such as first come, first go, the same as human
traffic regulations. Even more precise and targeted planning
and control can be conducted, which is also the potential of
CAV to improve the traffic system. However, the gap between
reality and ideals makes it necessary to consider situations
beyond. For example, [24] considers the driver’s irrational
behavior. Our work regards the imprecise observation of
intelligent connected vehicles and focuses on analyzing the
deceptive behavior in response.

In this section, we will rely on the game model we
proposed in Section II to analyze pure or mixed strategies
in ideal, imprecisely perceptual, cooperatively connecting,
and deceptively competing scenarios, as well as the impact
of these equilibria on the safety and efficiency of the entire
intersection. The comparison of the decision-making process
between four situations is presented in Fig. 3. This analysis
considers the variations in the information perceived and
received by the interacting vehicles, Vehicle A and Vehicle
B, under different circumstances. Factors such as the com-
pleteness and accuracy of the information will influence the
strategies these vehicles adopt to maximize their benefits.
Consequently, this leads to divergent impacts on the overall
traffic system.

A. Ideal situation

In an ideal situation, both vehicles at the intersection
know each other’s exact locations. Moreover, the locations of
decision points are also perceived by both CAVs. Each has
complete information of whether the other has completed the
decision and the specific choice. Therefore, for the vehicle
that makes the decision first, there are two options (pass or
yield), and we will analyze them by sequence.



Fig. 3. The game process comparison of four situations with two conflicting CAVs. Specifically, this paper considers the ideal, imprecise perception,
cooperative connection, and deception scenarios.

1) case 1: The first vehicle decides to pass. The utility
of the second decision-making vehicle choosing to yield is
higher than that of choosing to pass (−R < −L+l−|dA−dB|

v ).
Therefore, giving way to the leading vehicle is its dominant
strategy.

2) case 2: The first vehicle decides to yield. This time,
oppositely, the utility of the second decision-making vehicle
choosing to pass is higher (−D < 0). Therefore, when the
other CAV gives way, the ego vehicle should not hesitate to
continue passing through the intersection.

Considering the above two cases, due to the unique
dominant strategy for the other agent, the vehicle that makes
the decision first will choose to pass to gain more excellent
utility (−L+l+|dA−dB|

v < 0). The whole process can be seen
in Fig. 4.

Therefore, the ideal equilibrium is one of the two pure
strategy Nash equilibria of the chicken game shown in Table I
(depending on which agent makes the decision first). This
can also maximize the overall efficiency of intersections
(U tot

max =−L+l−|dA−dB|
v ). In addition, the pure strategy equilib-

rium complies with the first come, first go traffic regulation,
facilitating integration into HDVs and mixed traffic.

B. Perception uncertainty
Automated vehicle (AV) collects surrounding information

through sensors to achieve self-localization and traffic partic-
ipants’ observation to assist decision-making. However, due
to the imperfection of sensors, there is inherent uncertainty in
the observation, which has led to multiple accidents involving
AVs. This calls for enhancing the reliability and accuracy of
these sensor systems to mitigate risks and improve the overall
safety of AVs [25].

Fig. 4. The ideal game process of two conflicting vehicles at an intersection.
Dominant strategies of each sub-game are marked by red lines.

As the detection and measurement of the other vehicle is
not entirely precise, AVs make decisions with uncertainty.
In our game theory model, compared to the ideal situation,
AVs making decisions with perceived uncertainty in reality
forms an incomplete information game, as shown in Fig. 5.

We first consider the leading vehicle. Due to the fact
that the vehicle making decisions afterward is currently
driving normally, based on the ego vehicle’s observation,
this vehicle is believed to have completed the decision and
decided to pass with a certain probability (p ∈ (0,0.5)). The
complementary probability (1− p) suggests that it has not
made a dicision yet.

1) case 1: The lagging vehicle is believed to pass. If the
other vehicle is observed to complete a pass decision, the
ego vehicle should choose a dominant strategy of yield. It is
a local Nash Equilibrium generated from the chicken game
in the ideal situation with complete information (see Table I).



Fig. 5. The incomplete information game of two conflicting AVs at an
intersection. The uncertainty of observation results in the decision-making
vehicle not knowing whether the opponent, who is driving normally, has
decided to pass or has yet to make a choice.

2) case 2: The lagging AV is considered undecided yet.
If the ego vehicle believes a delayed decision from the
other, it will need to consider the vehicle’s perception error
and decision-making. No pure strategy equilibrium can be
expected. We then assume that the ego AV takes a mixed
strategy with a certain probability (x) of choosing to yield
while the complementary probability (1− x) of choosing to
pass.

Therefore, for the vehicle that makes the decision first,
based on its perception ability and analysis of the other
vehicle, the probabilities of choosing to yield and pass are:

Σ1 = pass
Σ1 = (1− p)(1− x) (5a)

Σ1 = yield
Σ1 = p+(1− p)x (5b)

Considering the second decision-making AV, although
there are perception uncertainties in distance and localiza-
tion, it can accurately understand the yield intention based on
the observed vehicle’s deceleration behavior. Consequently,
if the first AV opts to yield, the game reverts to a complete
information state, prompting the second AV to adopt passing
as its dominant strategy.

When the second vehicle is making decisions, and the first
vehicle is driving normally, based on the symmetry of equal
perception ability, the probability of determining that the first
vehicle has made a pass decision is 1− p.

Similarly, it can be assumed that the lagging AV takes
a mixed strategy with a certain probability (y) of choosing
to yield, while the complementary probability (1 − y) of
choosing to pass, under the condition of believing the first AV
undecided. Therefore, the probabilities of the second vehicle
choosing to yield and pass are:

Σ2 = pass
Σ2 = p(1− y) (6a)

Σ2 = yield
Σ2 = 1− p+ py (6b)

Therefore, under such circumstances, the optimal strategy

for the lagging vehicle is to:

argmax
y

− L+ l −|dA −dB|
v

y

+(1− p)(1− x)(−R)(1− y)

 (7)

By solving this, we get:

y = 0, if x > 1− L+ l −|dA −dB|
vR(1− p)

(8a)

y = 1, if x < 1− L+ l −|dA −dB|
vR(1− p)

(8b)

y ∈ [0,1], if x = 1− L+ l −|dA −dB|
vR(1− p)

(8c)

On the other hand, for the vehicle making decisions first,
the optimal strategy is to:

argmax
x

− L+ l + |dA −dB|
v

x

+ p(1− y)(−R)(1− x)

 (9)

By solving this, we get:

x = 0, if y > 1− L+ l + |dA −dB|
vRp

(10a)

x = 1, if y < 1− L+ l + |dA −dB|
vRp

(10b)

x ∈ [0,1], if y = 1− L+ l + |dA −dB|
vRp

(10c)

The game equilibria under perception errors can be de-
rived by combining (8) and (10). When the observation is
precise, and there is a clear gap between two vehicles (p <
L+l+|dA−dB|

vR ), there exists an equilibrium that (x = 0,y = 1),
which is consistent with the first come, first go rule in ideal
situations.

As perception precision decreases or the distance between
two vehicles narrows (i.e. making a vague picture of who
leads and who falls behind) (p ≥ L+l+|dA−dB|

vR ), one more
pure strategy equilibrium (x = 1,y = 0) and a mixed strategy
equilibrium (x = 1− L+l−|dA−dB|

vR(1−p) ,y = 1− L+l+|dA−dB|
vRp ) will

show up. Due to the increased probability of being penalized
for safety issues, vehicles that make decisions first tend
to make a more conservative choice, and pure strategy
equilibrium will dominate. As for the mixed strategy, x ≈ 1
makes it similar to the pure yield strategy, preventing it from
passing the intersection without deceleration.

AV can have more confidence in the perception results
when the sensor precision is high enough over a threshold
due to the tiny probability of being penalized by collision.
In most cases, the leading AV decides to pass and only
yields when the other agent is perceived as leading. This
leads to a total utility of the intersection between optimal
and second-optimal, as a transition from a perfect situation
to an imprecisely perceived situation:

U tot
sec =−L+ l + |dA −dB|

v
<U tot

max (11)



AV can have more confidence in the perception results
when the sensor precision is high enough over a threshold
due to the tiny probability of being penalized by collision.
In most cases, the leading AV decides to pass and only
yields when the other agent is perceived as leading. This
leads to a total utility of the intersection between optimal
and second-optimal as a transition from a perfect situation
to an imprecisely perceived situation:

U tot
sec <U tot

av <U tot
max (12a)

U tot
av = max

{
U tot

sec,U
tot
tr (p)

}
(12b)

U tot
tr (p) =− p(1− p)R− p

L+ l + |dA −dB|
v

− (1− p)2 L+ l −|dA −dB|
v

(12c)

Taking a conservative strategy to avoid conflict actively
also conforms to our observation of most automated vehicles
operating on the road nowadays. However, it can be seen that
this caused by perception uncertainty harms the utility of the
leading vehicle and leads to a decrease in overall benefits in
efficiency and safety.

C. Connectivity and deception

CAVs enhance AVs’ capabilities via cooperative percep-
tion, decision-making, and control. Collaborative CAVs can
not only compensate for a single vehicle’s sensor blind spots
through multi-view information but also improve precision
in observing the same object through information fusion.
Taking distance measurement as an example, two vehicles
with the same perception ability make two independent and
shared observations of the same vehicle’s position, which
reduces the variance while maintaining unbiasedness:

µ
avg
co =

µA +µB

2
= µ

A = µ
B (13a)

(σavg
co )2 =

(
σA

)2
+
(
σB

)2

4
=

(
σA

)2

2
=

(
σB

)2

2
(13b)

Therefore, the cooperative perception can reduce the prob-
ability of misjudging the decision-making status of the other
agent (pco < p). For vehicles that make decisions first, a
smaller pco leads to more choices of pass when the other
agent’s decision status cannot be determined, which is a pure
strategy of (x = 0,y = 1).

Furthermore, if decision information can be shared be-
yond perception to achieve complete information, the game
between two CAVs will tend towards an ideal situation.
Only when the vehicle that makes the decision first observes
the wrong relationship, even with the help of cooperative
perception, will it choose the equilibrium strategy of yield
(while the second vehicle would decide to pass, which is also
the second optimal strategy for the overall intersection utility
U tot

sec). With such help, the total utility of the intersection will

be closer to the ideal situation:

U tot
tr <U tot

co <U tot
max (14a)

U tot
co =− pco

L+ l + |dA −dB|
v

− (1− pco)
L+ l + |dA −dB|

v

(14b)

From this, connectivity is effective and promising in
eliminating the reduction of utility caused by single AV
perception errors. However, under human-like autonomous
driving decision-making development, we cannot expect ev-
ery CAV to handle conflicts cooperatively. For the CAV
falling behind, although the first come, first go strategy is
beneficial for the overall traffic at the intersection, it pays
all the cost and suffers from wait and delay. It likely sends
incorrect leading messages through the V2V connectivity in
a deceptive manner, prompting the leading vehicle to brake
and yield.

1) case 1: Through cooperative decision-making. The
most effective way is often the weakest to attack. Inspired
by that yield is a dominant strategy for the lagging vehicle
to avoid delays and improve efficiency, the lagging CAV
will send information to the other CAV that the decision of
pass has been made, thereby forcing the previously leading
vehicle to yield and wait longer. This is a pure strategy Nash
equilibrium in the chicken game (see Table I) with complete
information, while the total utility is not optimal.

2) case 2: Through cooperative perception. Deviated lo-
cation information can be transmitted to the other CAV,
prompting it to yield. It is more difficult to distinguish
from the normal perception than directly sharing incorrect
decision-making status information. Compared to (13), such
deception still improves the precision of perception but
reduces the accuracy:

µ
avg
de =

µA +µB +bias
2

= µ
avg
co +

bias
2

(15a)

(
σ

avg
de

)2
=

(
σA

)2
+
(
σB

)2

4
= (σavg

co )2 (15b)

From the comparison between cooperative and deceptive
perception, we can obtain that under the attack of deceptive
information, the probability of the leading vehicle making
incorrect judgments on the decision-making status of the
lagging vehicle has significantly increased (pco < p < pde).

A larger pde has a less probability to satisfy the re-
quirement of pde <

L+l+|dA−dB|
vR . Even if it can be met, this

condition raises the probability of the first deciding vehicle
yielding, subsequently diminishing the total utility of the
intersection.

U tot
sec ≤U tot

de <U tot
av <U tot

max

U tot
de = max

{
U tot

sec,U
tot
tr (pde)

} (16)

Due to the fact that CAVs will always deceive for advan-
tage in a connected condition, hurting the overall utility of
the intersection to even worse than AVs without connectivity,
each CAV’s belief in the other’s decision-making status and



Fig. 6. From left to right, (a)-(d) show the decisions of both vehicles changing with true value gaps under ideal condition, imprecise perception, cooperation,
and deception, respectively. Accordingly, (e)-(h) represent the utility of both vehicles under the corresponding decisions.

location information decreases to zero. This is in line with the
characteristics of cheap talk games. As a result, each CAV
relies only on the information it perceives, and the role of the
vehicle-to-vehicle connectivity will be significantly reduced.

IV. EXPERIMENT

In this section, we introduce our simulation experiment to
intuitively and quantitatively show the impact of vehicle per-
ception uncertainty, connectivity, and deception on decision-
making games at a conflicting intersection.

The parameters for the simulation experiments are listed
in Table II.

TABLE II
PARAMETERS USED IN SIMULATION EXPERIMENTS.

Parameter Value
Road width L 10 m
Vehicle length l 5 m
Vehicle speed v 40 km/h
Equivalent time for safety penalty R 10000 s
Delay caused by both yield D 2 s
Measurement error std σ 0.1m

A conflict will exist in this intersection when there is a L+
l = 15m difference in distance between two vehicles and the
intersection entrances. We consider the leading vehicle and
cover situations where the lagging vehicle is 0∼ 20m behind.
We repeated N = 30 random trials for uncertain scenarios,
and the average results are shown in Fig. 6.

In an ideal conflicting situation, the leading vehicle will
always decide to pass while the lagging vehicle will give
way out. And if the gap between them is larger than 15m,
both vehicles will choose to pass with the awareness of no
conflict. The leading vehicle’s utility keeps at zero while the

lagging vehicle’s utility linearly increases from zero distance
to a larger gap (see Figure. 6 (a) and (e)).

In the presence of perception errors, the observation results
of each vehicle are set to have a Gaussian error with a
standard deviation of 0.1m. This makes the 95% confidence
interval of the perception result around ±0.2m, consistent
with the ability of cutting edge AVs [26]. When two vehicles
are close, the leading vehicle cannot accurately determine the
location relationship, leading to its active yield decision. This
causes longer waiting times, resulting in a negative utility of
the leading vehicle, and even worse, with the gap between
increases. When the gap is large enough, and the probability
of misjudgment is below the threshold, both vehicles will
resume the first come, first go strategy. In addition, when
the gap increases to around 15m, the lagging vehicle will
sway between pass and yield due to uncertainty, where
conflicting traffic leads to a probability of collision accidents
(see Figure. 6 (b) and (f)).

Cooperative perception can effectively compensate for
decreased utility caused by perception errors. Smaller uncer-
tainty helps to achieve a lower probability of misjudgment,
thereby reducing the range of distance between two vehicles
with which the leading vehicle will actively decide to yield
and that of potential accidents (see Figure. 6 (c) and (g), with
larger utility and lower collision probability).

However, transmitting deceptive information can reduce
the system-level benefits. Location information with an offset
of 0.2m is set to be transmitted from the lagging vehicle
to the leading vehicle, causing a significant deviation in
the leading vehicle’s judgment of the location relationship
between the two vehicles. As a result, deceptive information
leads to the larger gap range with which the leading vehicle
actively yields and a higher probability of collision at the
critical gap of 15m (see Figure. 6 (d) and (h)).



V. CONCLUSION

In summary, this paper has introduced a game theoretical
framework for analyzing CAV interactions, explicitly exam-
ining the repercussions of vehicle perception uncertainty and
adversarial deception on the traffic system. The strategic
use of CAVs’ deception to optimize individual utility has
been theoretically demonstrated to potentially compromise
the efficiency and safety of the overall traffic system, par-
ticularly in conflicting intersections. This paradox highlights
the inherent conflict between single-vehicle optimization and
the broader system-wide benefits, weakening the advantages
brought by vehicle-to-vehicle connectivity. In addition, ex-
tensive simulation experiments have been conducted to un-
derscore the detrimental impact of such deceptive maneuvers.

Furthermore, we plan to delve into the decision-making
process, exploring the equilibrium between signaling strate-
gies and reception beliefs through signaling games. Expand-
ing the scope to diverse scenarios will provide a more com-
prehensive understanding of how these characteristics impact
macroscopic traffic networks. Moreover, ongoing real-world
experiments are poised to validate our theoretical derivations.

Inspired by [27], future research is expected to leverage
machine learning methods for accurately identifying irra-
tional drivers and cooperative vehicles, thereby improving
decision-making for CAVs. Even without intentional decep-
tion, addressing mechanisms to counteract similar behaviors
can address problems like communication delays. Therefore,
we advocate integrating considerations of incomplete infor-
mation in CAV studies, employing verification mechanisms,
recognition methods, robust control, and other strategies
to mitigate the adverse effects on intelligent transportation
systems.
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