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Abstract— Cooperative driving systems are expected to en-
hance safety, mobility, and efficiency through vehicle connec-
tivity technologies. Lower-level vehicle-to-vehicle (V2V) com-
munication transmits high-frequency status information, such
as location, velocity, and acceleration, between vehicles. This
approach contributes limitedly to prediction accuracy, requires
high-frequency hardware, and is sensitive to communication
delays. Recent studies have shown that intent sharing, which
conveys planning trajectories, significantly improves prediction
accuracy and control performance but requires higher band-
width. However, mainstream vehicle communication methods
struggle to balance cost and bandwidth for effective intent
sharing. High-bandwidth wireless communication methods such
as dedicated short-range communication (DSRC) and cellular
vehicle-to-everything (C-V2X) cost much for devices, while low-
cost visible light communication (VLC) can hardly support
the necessary bandwidth. To address this challenge, we pro-
pose a lightweight intent sharing approach that reduces data
transmission volume while maintaining prediction accuracy.
Specifically, intended velocity trajectories are represented us-
ing regressed polynomial functions over a fixed time period,
requiring only the transmission of polynomial coefficients and a
timestamp for synchronization. The feasibility of this approach
is demonstrated through simulations of car-following behavior
using a Linear-Quadratic Regulator (LQR). Additionally, real
vehicle experiments using a designated velocity cycle further
validate the method. Results show that both planned and actual
trajectories of the following vehicle closely align with those using
ideal intent sharing approaches under significantly reduced
communication data volume.

I. INTRODUCTION

Although the integration of autonomous vehicles (AVs)
into human-driven traffic remains controversial due to their
unpredictable behavior and conservative strategies adopted
to ensure safety [1], [2], cooperative driving is widely
expected to enhance AV safety, mobility, and efficiency
through vehicle connectivity technologies [3]. Among these,
Cooperative Adaptive Cruise Control (CACC) plays a key
role in improving AV car-following behavior by leveraging
vehicle-to-vehicle (V2V) communication for longitudinal
control [4]. Unlike conventional Adaptive Cruise Control
(ACC), where the following AV relies solely on distance
and velocity observations, CACC enables the following AV
to receive information from the preceding vehicle, allowing
it to achieve optimal spacing and velocity, thereby improving
road capacity and reducing energy consumption [5], [6].
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Fig. 1. Information sharing structure and V2V approaches for CACC. Our
lightweight intent sharing approach significantly reduces data transmission
volume while keeping the prediction accuracy of the preceding vehicle.

Early-stage CACC systems primarily rely on status shar-
ing, where connected and automated vehicles (CAVs) ex-
change low-level status information such as location, veloc-
ity, and acceleration [7]. These data are used to estimate
inter-vehicle distances and time headway, and therefore
predict the preceding vehicle’s future motion [8]. However,
status sharing only enhances the following vehicle’s per-
ception rather than providing an explicit prediction on the
preceding AV, leading to significant accuracy loss over time.
Moreover, this method is highly dependent on real-time
transmission without delays, making it difficult to achieve
its ideal utilities under existing networks and hardware.
Recent research has demonstrated that intent sharing, where
CAVs transmit planned trajectories as intents, significantly
improves safety, mobility, and efficiency compared to status
sharing [9], [10], [11]. For CACC, the preceding vehicle
transmits the planned trajectory (i.e., intent) to the following
vehicle through the V2X network. The ego vehicle thus can
optimize its long-term control to achieve smoother, safer,



and more efficient car-following behavior [12]. In addition,
intent sharing can also enhance the benefits of CAVs in
conflicting traffic scenarios such as lane changes, mergings,
and intersections [13].

Despite its advantages, intent sharing faces major chal-
lenges in balancing the cost and bandwidth of mainstream
vehicle communication methods [14], [15]. High-bandwidth
wireless communication methods include Dedicated Short-
Range Communication (DSRC) and Cellular Vehicle-to-
Everything (C-V2X) [16]. DSRC has been in development
for over two decades and enables vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication, but re-
quires massive infrastructure investments. Furthermore, the
complex process of matching intent information to specific
surrounding vehicles introduces deception and cyberattacks,
limiting large-scale deployment [17]. C-V2X is becoming
more popular in a global manner, while PC5 mode (direct
communication) suffers from similar security and matching
concerns with DSRC. The other Uu mode (using cellular
base stations) introduces high latency, making it challenging
to support real-time intent sharing [18]. Additionally, both
DSRC and C-V2X cost hundreds to thousands of dollars per
unit with marginal benefits at low market penetration rates,
posing a high barrier to widespread CAV adoption.

On the other hand, low-cost visible light communication
(VLC) has been proposed as an alternative for V2V com-
munications in CACC [19], [20], including our previous
work [21]. VLC transmits dynamic information via an LED
panel using binary encoding, which is then captured by
the following vehicle’s camera. Although VLC is limited
to direct line-of-sight communication and cannot support
long-range cooperation, field tests have shown that it is
sufficient for over 99.9% of traffic scenarios [22]. Moreover,
VLC enables simultaneous information sharing and vehicle
matching, while being more resistant to wireless interference
and cyberattacks. However, due to resolution constraints
in camera-based recognition at standard car-following dis-
tances, VLC-based intent sharing is limited to transmitting
only a few dozen binary bits per frame, making it inadequate
for regular intent sharing.

To address this challenge, a new lightweight intent sharing
approach is proposed in this paper to efficiently improve
the cooperative car-following performance in terms of safety,
mobility, and efficiency. Unlike regular intent sharing, which
transmits complete planned velocity trajectories [23], our
approach applies polynomial regression to encode velocity
trajectories over fixed time intervals. This segmentation
balances flexibility and accuracy, aligning with the motion

prediction horizons used in model predictive control (MPC)
methods [24]. By transmitting only the polynomial coeffi-
cients and a timestamp for time synchronization, our method
enables CACC with low-frequency, low-rate communica-
tion, improving robustness to delays while maintaining high
prediction accuracy of the preceding vehicle’s trajectory.
Figure 1 illustrates the overall structure of the proposed
lightweight intent sharing framework, comparing it to sta-
tus sharing and conventional intent sharing. Additionally,
a qualitative comparison of different information-sharing
approaches is presented in Table 1.

In this study, we assume the following vehicle drives
under a constant time headway policy [25]. After receiving
the preceding vehicle’s intended velocity trajectory, the fol-
lowing vehicle employs optimal control to generate its own
velocity trajectory. We investigate the effectiveness of the
proposed lightweight intent sharing approach in accurately
representing the preceding vehicle’s velocity trajectory and
assess the optimality of the following vehicle’s planned ve-
locity trajectory using a Linear—Quadratic Regulator (LQR)
control strategy. A predefined velocity cycle is used for the
preceding vehicle in simulation experiments to evaluate our
approach. Additionally, real-world vehicle experiments are
conducted to account for practical communication, control,
and environmental constraints. In these experiments, two
CAVs are deployed, where the preceding AV follows a des-
ignated velocity cycle and transmits intent segments via V2V
communication at fixed intervals. The following AV then
generates its motion plan using LQR control, integrating the
received intent information. Experiment results demonstrate
that the proposed lightweight intent sharing approach sub-
stantially reduces data transmission volume while achieving
cooperative driving performance comparable to regular intent
sharing methods. The Normalized Euclidean Distance (NED)
between the following vehicle’s velocity trajectories obtained
through regular and lightweight intent sharing is 0.002 m/s
in simulation, 0.050 m/s for real vehicle planning, and 0.053
m/s for actual behavior.

The rest of this paper is organized as follows. Section II
describes the car-following model and LQR used for CACC
and provides theoretical validation for the lightweight intent
sharing approach by polynomial regression. In Section III,
we introduce our velocity cycle and verify the proposed
lightweight intent sharing approach for CACC through sim-
ulation experiments. Then we demonstrate a real vehicle ex-
periment conducted in Section IV to validate our lightweight
intent sharing’s feasibility in a two-CAV scenario. Finally,
Section V concludes the paper.

TABLE I
COMPARISON OF DIFFERENT INFORMATION SHARING METHODS IN CACC SCENARIO

Data Volume

Delay Sensitivity ~ Prediction Accuracy

Approaches | Frequency

Status sharing High

Intent sharing Low
(ours) Lightweight intent sharing Low

Low High Low
High Low High
Low Low High




II. METHOD

In this section, we will first state the car-following sce-
nario as mathematical formulations. We then introduce the
optimal control method for the following AV through LQR
with intent sharing from the preceding AV. In addition, the
polynomial regression for lightweight intent sharing will also
be demonstrated and compared.

A. Car-Following Scenario

Prior to the specifics of the car-following control model,
we first introduce definitions and notations for description.

Define i € .# :={0,1,2,...,I} denoting the vehicle index,
where [ is the total number of car-following CAVs in a
platoon. CAV with i = 0 refers to the lead vehicle, which
is not in the car-following state.

As discrete systems in the real world, each CAV operates
at consecutive time steps with a fixed interval 7, in line with
the system frequency of CAVs from perception to control.
The trajectory data at time ¢ of vehicle i then corresponds to
a state vector:

si(t) = [pi(e),vi(0)]" . (1

Here, p;(t) and v;(t) denote the spatial location and the
longitudinal velocity of vehicle i at time ¢, respectively.
We then define d;() as:

di(t) = pi—1(t) — pi(t),

to represent the spacing between the two consecutive vehicles
i—1 and i at time z. Here i > 1 as the lead CAV is not in
the car-following state.

Similarly, we have:

Avi(t) = vi_1(t) —vi(t),

which is defined as the relative velocity between two con-
secutive vehicles i — 1 and i at time ¢.
Therefore,

[di(1), Avi(0)]" = si-1(£) = si(0),

A corresponding response a;(t) = g ((d;(t),Avi(t),vi(r)) is
then given to each vehicle i at time . Here, g(-) refers to
an arbitrary control law denoting the desired acceleration
between time steps based on the current states.

Similar to the widely adopted ACC/CACC model [7], [26],
a linear control law [27] is given to the system:

ai(t) =g (di(t) — dy) + g~ Avi(t) + g'vilt), (5

where d; represents the minimum safe distance, related to
velocity and vehicle length. Additionally, g¢, g*", and g" are
three linear parameters forming the model.

We can then establish the state space function for the
vehicle dynamics system according to its state vector s;(¢)

and response vector u;(¢) = [vi(t),a;(t)]":

si(t+ 1) = Csi(t) + Duy(t),

with the output matrix C and the feedthrough matrix D are:

=l i o=

Vie .7 \0, )

Vie 7\0, 3)

Vie 7\0. (4

(6a)

(6b)

B. Linear—Quadratic Regulator

As we have derived the general formulation, a specific
simplified longitudinal car-following control model can be
set in a two-CAV CACC scenario. In addition, the constant
time headway (CTH) principle [25] is adopted to maintain a
fixed time headway between two CAVs:

a(t) =g (d(t) —v(t)T — dy) + g™ Av(1), 7

where a(t), d(t), v(t), and Av(t) represent the following
CAV’s acceleration, distance gap to the preceding vehicle,
velocity, and velocity difference with the preceding CAV, re-
spectively. Additionally, g? and g*” are two linear parameters
similar to those in Equation (5). Furthermore, 7T is the safe
time headway between two CAVs, and becomes the desired
time headway if d; is set to zero.

Assume a planned velocity trajectory is transmitted from
the preceding vehicle to the following vehicle as intent
sharing, denoted as v{ (t),t € Ty = {teste + T, tc + W}
It consists of the planned velocity of the preceding vehicle
at consecutive time steps from cooperating time f,, with
v representing the planning period. The following CAV
can then utilize the preceding vehicle’s planned velocity
trajectory v (t) to optimize its own velocity in order to
follow the given trajectory’.

With an initial distance gap being measured as d. when
cooperating, the expected distance gap between two CAVs
at each time step can be derived as:

t

d(t)=d.+ Y (vj(0)—v(0))r,

0=t,

vt € Ty. 8)

The state error ey (r) can then be derived as:

e(t)=s(t) —sg (1) = ()T +d,]",
— [d(t) —v()T —ds,v(t) = ()], Vi€ Ty, )

which shows the deviation from the ideal distance gap and
velocity difference of the expected CACC process.

The LQR optimal control algorithm aims to optimize two
linear control parameters g? and g2” to minimize a quadratic
cost function over a given time period .7,. The cost function
is defined as:

=)

(;e(t)TQe(t)—i-;u(t)TRu(t)), (10)
teTy

where Q and R are the weighting matrices for the states and
inputs u(t) = [v(¢),a(t)]”, respectively. These matrices are
chosen to balance the trade-off between achieving the desired
state and avoiding the rapid changes in vehicle motion.

'For the received intent information of the preceding vehicle, there are
many other objectives that can be optimized for the following vehicle,
such as safety, energy, comfort, etc. Here, we only consider following the
trajectory of the preceding vehicle. For more information, please refer to
our previous work [21] or other related studies.



C. Polynomial Regression

In a fixed time range [f,,f. + Y], the total data transmis-
sion volume required by regular intent sharing is about %
velocity data points, challenging the cost for bandwidth dur-
ing communications between multiple vehicles in complex
environments.

We therefore propose a lightweight communication ap-
proach for intent sharing, with modeling the velocity trajec-
tory v(")'/ (t) as a polynomial function over time under the fixed
period v.

Taking a cubic polynomial regression as an example, the
cubic function for v (¢) is defined as:

v (t) = Bo+ Pt + Bot® + B +£(t), (11)

where By, B1, B2, and B3 are the polynomial coefficients that
need to be estimated, and €(¢) represents the error term at
each time step.

The estimation of the coefficients is performed by mini-
mizing the sum of squared errors (SSE) between the planned
velocities and those generated by the cubic polynomial
function. This can be expressed as:

tety

min Y e(t)> = (W (1) = (Bo+Bit + B> + Bst®))” . (12)

ﬁ1,2‘3‘4 t=t,

After determining the coefficients, it is crucial to evaluate
the model’s performance of velocity predictions. Common
metrics for this purpose include the coefficient of determina-
tion R-squared, and Root Mean Squared Error (RMSE). R-
squared is used to measure the proportion of the variance in
the velocity variable that is predictable from the independent
variable (time). Also, RMSE provides a measure of the
differences between velocity values predicted by the model
and the velocity values actually observed.

Six typical scenarios are shown in Figure 2, including con-
stant acceleration, constant velocity, linear velocity variation
and nonlinear velocity variation, etc. We utilized polynomial
regression to fit the velocity trajectories in such five-second
pieces, from linear to quartic.

The performance metrics of these regressions, such as R-
squared (R?) and Root Mean Squared Error (RMSE), are
recorded in Table II, demonstrating the accuracy of the
corresponding method for conveying dynamic information
in a simplified format.

It can be seen from Figure 2 and Table II that all poly-
nomial regression methods perform 100% well in constant

Fig. 2. Six typical scenarios for polynomial regression. (a) Constant
acceleration. (b) Constant velocity. (c) Linear acceleration and maintenance.
(d) Linear deceleration between constant velocities. (e) Constant velocity
between nonlinear changes. (f) Nonlinear velocity changes.

acceleration and velocity scenarios (with linear velocity-
time relationships). However, due to the lack of flexibility,
it is difficult to describe complex dynamic processes for
linear and quadratic regression methods, especially when
accelerating first and then driving at a constant velocity.
For more complex processes such as constant velocity,
deceleration, and constant velocity again, the performance is
actually better, partly because the continuous changes within
a short period of five seconds create smaller differences
endogenously. The R-squared value for linear regression in
the third typical data piece is only 0.4068, with an RMSE

TABLE II
PERFORMANCE METRICS OF DIFFERENT POLYNOMIAL REGRESSIONS TO VELOCITY TRAJECTORIES.

Data piece Linear Quadratic Cubic Quartic
P R> RMSE R* RMSE R*> RMSE R> RMSE
(a) Constant acceleration 1.0000  0.0000  1.0000  0.0000  1.0000 0.0000 1.0000  0.0000
(b) Constant velocity 1.0000  0.0000  1.0000  0.0000 1.0000 0.0000 1.0000  0.0000
(c) Linear acceleration and maintenance 0.4068 03971 0.7695 0.2501 0.9459 0.1225 0.9831 0.0692
(d) Linear deceleration between constant velocities | 0.7272  0.2256  0.9027  0.1361 0.9076  0.1341 0.9663 0.0818
(e) Constant velocity between nonlinear changes 04641 1.7164 09376 0.5919 0.9395 0.5891 0.9808  0.3350
(f) Nonlinear velocity changes 0.5822  1.4259 0.8970 0.7155 0.9827 0.2964 0.9888 0.2410




equal to 0.3971, showing significant deviations. Quadratic
regression is better by a few, but the R-squared value of
0.7695 and the RMSE of 0.2501 are far from accurate
representations of the original trajectory.

Despite the quality of the fit varying among pieces, the
intended velocities and the trajectory fitted by the cubic and
quartic polynomial function closely align for each piece. Cu-
bic regression methods achieve R-square values above 0.90
for all of the six typical cases presented, demonstrating very
good tracking performance. It is not beyond expectation that
quartic regression performs better in all situations, achieving
R-square values above 0.95 for all. However, its advantage
requires an additional 33% number of coefficients for intent
sharing data transmission.

III. SIMULATION

In the previous section, we demonstrated the data compres-
sion and intent reproduction capabilities of our lightweight
intent sharing for the original velocity trajectories. In this
section, we demonstrate our simulation experiments to verify
the feasibility of the proposed lightweight intent sharing
approach in the CACC scenario. We start from the intro-
duction of a velocity cycle, then represent lightweight intent
sharing by using cubic polynomial regression, followed by
the performance analysis of our lightweight intent sharing
and comparison with regular intent sharing.

A. Velocity Cycle

A velocity cycle will be first introduced, which serves as
the base of our experiments, as shown in Figure 3.

Fig. 3. A designed velocity cycle, including two acceleration processes, a
deceleration process, and three constant velocity processes.

The designed velocity trajectory starts from stillness. It
increases to 3m/s at the time of 5s, and then maintains the
constant velocity for 25 seconds. At the time of 30s, the
vehicle is set to velocity up again, and ends at 5m/s within 1
second. After 15 seconds of driving without velocity change,
the trajectory decreases the velocity to 4m/s in 1 second.
Finally, the vehicle was designed to travel at a constant
velocity for the last 13 seconds.

To sum up, besides constant velocity driving, two velocity-
increasing processes with different accelerations are in-
cluded, while a deceleration is also covered in this velocity
trajectory to build a complete velocity change process.

B. Lightweight Intent Sharing

The whole velocity cycle is split into 12 segments, of
which the time interval is five seconds. Each piece of the
five-second velocity trajectory is utilized for transmission as
intent information of the preceding vehicle. The length of
the time interval is consistent with the motion prediction
duration used in predictive control methods [28], [29].

Subsequently, we employ polynomial regression to trans-
form the original velocity trajectory into a series of polyno-
mial coefficients. We utilized cubic polynomial functions to
fit the velocity trajectory into twelve five-second segments.
This polynomial function possesses the highest compression
rate among the viable data-representative approaches?.

The time step of the velocity cycle and each piece of
velocity trajectories is 0.1 second, which is consistent with
the normal frequency of ordinary CAVs. Therefore, to trans-
mit the intent information through a regular approach, each
piece requires a volume of 51 data points (including one
timestamp). On the contrary, our lightweight intent sharing
approach needs only 5 data points (four coefficients and one
timestamp). In such a comparison, our approach provides
over 90% reduction in the required transmitted data volume,
and a foundation for CACC that supports low-cost VLC.

C. Simulated CACC

We used the velocity cycle as the preceding vehicle’s
intent, and transmitted the intent information to the following
CAV. We conducted simulation tests using the LQR con-
troller mentioned in section II.

Specifically, the Q and R matrices we have selected for
simulation are:

10 0 10
e[ 3] #=ls %)

which gives distance gap more weight than velocity dif-
ference, and a balance between tracking performance and
smooth changes.

For the car-following model, we keep using a time interval
of 0.1 seconds, set a headway of two seconds, and let the
minimum safe distance to be five meters. These data are
derived from empirical analysis and are highly capable of
expressing typical traffic characteristics.

For the initial state, we set both vehicles to zero velocity,
that is, starting from a standstill. The distance between the
preceding and the following CAV is set to five meters, align-
ing with the expected distance gap at the standstill (equals
minimum safe distance), preventing unexpected chaos and
oscillations.

The results of the simulation experiment are shown in
Figure 4. The upper half of the figure shows the velocity

13)

2Qther polynomial functions can also be adaptively utilized referring to
the bandwidth limit, and will be studied in the future.



cycle (also the velocity trajectory of the preceding vehicle)
and the result of regular intent sharing, that is, transmitting
original velocity trajectories without any compressions. The
lower half of the figure shows the regressed velocity cycle
and the simulated velocity trajectory of the following CAV
using our lightweight intent sharing.
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Fig. 4. Simulation results on LQR control with (up) regular intent sharing
and (bottom) our lightweight intent sharing in a two-CAV CACC scenario.

By comparing the velocity cycle and the following CAV’s
velocity trajectories, it can be observed that during the
initial start-up, the following CAV exhibited significant ac-
celeration. However as the preceding vehicle continued to
increase the velocity, the following CAV gradually began to
fall behind. At about 15 seconds, it showed a stable state
following the preceding vehicle, and two CAVs both drive
at constant velocity. Afterward, the velocity of the preceding
vehicle changed twice, and the following CAV caught up
with the preceding CAV after a certain delay, forming a
stable state. This is in line with the constant time headway
car-following criterion, especially when we set the Q and R
matrices to give greater weight to the distance gap.

In addition, comparing the regular intent sharing with
our lightweight intent sharing, we found that before 30
seconds, due to the linear trajectory of the velocity cycle,
our lightweight intent sharing method compressed the trans-
mission data without any information loss, thus maintaining
complete consistency with the control after regular intent
sharing.

After 30 seconds, there is an obvious deviation between
lightweight intent sharing and regular intent sharing, espe-
cially when there are changes in the velocity cycle (e.g., from
acceleration to constant velocity, from constant velocity to
deceleration, from deceleration to uniform speed, etc.). In
such cases, the speed trajectories of the following vehicle
after LQR control also show certain differences. For infor-
mation loss that occurs at sudden changes in the original
velocity cycle, such as 31 seconds and 46 seconds, the
following CAV after LQR control does not show significant
trajectory differences compared to that with regular intent

sharing, possibly because the control algorithm already has
certain robustness to state changes. On the contrary, the
information loss at a constant state resulted in a deviation
between the two, such as 47 seconds and 50 seconds.

In this study, Normalized Euclidean Distance (NED) will
be used as a performance metric to evaluate the similarity be-
tween trajectories and velocity profiles generated by regular
and lightweight intent sharing. This metric, derived from the
standard Euclidean distance, quantifies the deviation between
two vectors and is normalized to eliminate the influence of

scale.
N

Y (vii—va)’

i=1

[Vvi—=val2 _ 1
N N

NED = (14)

Here v and v; represents two velocity trajectories, and
|- |l2 indicates the 2-norm, which is the Euclidean distance
between them. In addition, N represents the total number of
data points used for normalization of Euclidean distances to
derive NED.

Based on the simulation result, the NED between the
following velocities obtained using regular and lightweight
intent sharing is 0.002 m/s, indicating an almost negligible
difference.

Overall, the results reflect the excellent tracking ability of
the LQR controller under intent sharing, and the excellent
performance of our lightweight intent sharing for CACC
while significantly reducing the data transmission volume.

Certainly, the real-world conditions will be more com-
plicated, including time delays, unpredictable controls, and
unexpected vehicle dynamics influenced by the environment.
To further substantiate the validity of our lightweight intent
sharing approach, we will provide a detailed account of our
real-world vehicle experiments in the subsequent section.

IV. REAL VEHICLE EXPERIMENT

Fig. 5. Connected and autonomous vehicles with sensors and communi-
cation devices for real world experiment.

In addition, to validate the feasibility and effectiveness
of our lightweight intent sharing approach, we conducted
real vehicle experiments for verification. Two CAVs with
advanced sensors, in-vehicle computation platforms, and



Fig. 6. Comparison of results between two control experiments. (a) Comparison of planned velocities adopting regular intent sharing and our lightweight
intent sharing. (b) Comparison of actual velocities adopting regular intent sharing and our lightweight intent sharing.

drive-by-wire system are utilized for experiments, as shown
in Figure 5.

We use the black vehicle as the preceding vehicle while
the red one is set to follow it. The preceding black vehicle
is assumed to drive with the velocity trajectory in line
with our cycle shown in Figure 3. The whole planned
velocity trajectory is shared with the red following vehicle
when starting from still at the time O second. The location,
distance, and velocity of the preceding black vehicle are
also perceived by the following red vehicle to the computing
unit for reference by the control algorithm, which has also
experienced these time delays. Therefore, the time delay
of shared information in the sensors and communication,
computing unit, and control actuators are taken into account,
including ni, 1m2, N3, and 14 in Figure 5.

We conducted two control experiments. One of which
transmits the original velocity cycle as the regular intent
shared by the black preceding vehicle and received by the
red following vehicle. On the other hand, the other group
adopted the lightweight intent sharing approach proposed in
this paper and transmitted the polynomial regressed velocity
trajectory as the preceding vehicle’s intent.

With the received information, the red following vehicle
took the control method demonstrated in Section II and
followed the black preceding vehicle’s velocities. The control
method generated the planning velocity at each time and
gave out the acceleration value for the actuators to refer.
The comparison of planning velocities and actual velocities
between the two groups of experiments can be seen in the
Figure 6.

From Figure 6, it can be seen that the velocity trajectory
adopting our proposed lightweight intent sharing approach
maintains a significantly high consistency with the original
velocity cycle, especially in the constant velocity cases
that take over the most time in the cycle, with only a

small amount of deviation at occasional accelerations and
decelerations, demonstrating the high prediction accuracy of
our proposed approach.

As a result, planning trajectories supported by original
velocity cycle and lightweight intent sharing show a slight
difference (see Figure 6(a)). Moreover, the actual velocity
trajectories do not amplify the differences between planning
trajectories. On the contrast, the two trajectories show a
precise overlap during the 30 ~ 50 second period. This
period coincides with the time when polynomial regressed
velocity slightly deviates from the original velocity cycle (see
Figure 6(b)).

Specifically, the NED between the two velocity trajectories
achieved by regular and lightweight intent sharing is 0.050
m/s for the planning trajectory and 0.053 m/s for the actual
trajectory, indicating minimal deviation.

Therefore, it can be verified that our proposed lightweight
intent sharing approach has the ability to simultaneously
keep the prediction accuracy of preceding vehicle while
significantly reduce the requirements on the volume of data
transmission in-between vehicles.

V. CONCLUSION

In this paper, we propose a lightweight intent sharing com-
munication approach in-between vehicles, aiming at reducing
the data volume requirements under the limited bandwidth
while keeping the prediction accuracy of surrounding vehi-
cles’ velocity trajectories. This methodology provides a prac-
tical framework to enhance cooperative driving. Specifically,
we adopt a polynomial regression to represent the velocity
trajectory of the preceding vehicle on a fixed period. Then,
the coefficients of the polynomial function are transmitted
from the preceding vehicle to the following vehicle. Then, the
following vehicle obtains the intended velocity of the preced-
ing vehicle based on these coefficients. Also, we verified that



the cubic polynomial regression method is the lightest for
an acceptable data representation. Furthermore, we verified
this lightweight intent sharing communication approach not
only through theoretical derivation but also by simulation and
real vehicle experiments. The experiment results demonstrate
that the planning and actual vehicle trajectories supported by
regular intent sharing and our lightweight one are precisely
consistent, with a NED of 0.002 m/s in simulation and
0.050 m/s for planned trajectories and 0.053 m/s for actual
behaviors in the real vehicle experiment. This proves that
our approach is effective in decreasing transmission data
to reduce communication bandwidth requirements, while
maintaining the expected improvement of intent sharing in
cooperative driving for traffic utilities.

As for consequent work and future directions, sensor
and information sharing misalignment will be taken into
account. When the sensing and communication delays are
inconsistent, time misalignment might have some slight neg-
ative effects on the cooperative driving system. Subsequent
experiments will try to cover this and attempting to verify the
feasibility and effectiveness of our lightweight intent sharing
approach in a more complete way. In addition, it promotes
low-cost and easy-to-use VLC to quickly improve the traffic
utility through connected and automated vehicles.
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