Robotics and Autonomous Systems 193 (2025) 105109

Rabotics| and L
Autonomous Systems

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

L))

Check for

Coverage Trajectory Planning Problem on 3D Terrains with safety constraints &
for automated lawn mower: Exact and heuristic approaches

Hang Zhou, Peng Zhang *, Zhaohui Liang, Hangyu Li, Xiaopeng Li

Department of Civil and Environmental Engineering, University of Wisconsin-Madison, United States of America

ARTICLE INFO ABSTRACT

Keywords: Recent technological advancements in automation have attracted increased interest in automated lawn mowers.
Coverage Path Planning Developing a safe and efficient trajectory to cover entire terrains is crucial for autonomous mowing. Unlike the
Trajectory Planning simplified indoor environments with flat surfaces commonly assumed in existing literature, lawn maintenance

Automated lawn mower typically occurs in complex outdoor settings characterized by irregular terrains, including obstacles and slopes.

These irregularities pose significant safety risks, such as the potential for the mower to tip over. This paper
introduces the Coverage Trajectory Planning Problem on 3D Terrains (CTPP-3DT), which involves determining
both the path and speed profile for an automated lawn mower to effectively cover a general 3D terrain
with varying slopes. The objective of the CTPP-3DT is to minimize the completion time, including the time
for turning, which satisfies safety constraints on the robot’s speed and acceleration on various slopes. To
address this challenge, we first propose a Mixed-Integer Linear Programming (MILP) model based on a graph
expansion method, suitable for solving small-scale instances. For larger instances, we develop a decomposition-
based heuristic algorithm using Simulated Annealing. Extensive experiments conducted on benchmark instances
demonstrate the effectiveness of our proposed MILP model and heuristic algorithm for small-size and large-
size instances. The comparison between the optimized strategy and the conservative strategy highlights the
necessity of incorporating safety constraints in trajectory planning, resulting in an average reduction of more
than 40% in completion time. Furthermore, sensitivity analyses reveal that technological advancements in
mowers, such as increasing the maximum speed and acceleration and reducing turning speed, can significantly
reduce the overall completion time. Our code and data are available at https://github.com/CATS-Lab/Mower-

CTPP-3D.

1. Introduction particularly in low-cost sensors such as RGB-D cameras, have further
driven the applications and large-size production of automated lawn
The rapid development of automation has presented numerous mowers [1,2]. This highlights the need for developing algorithms for

industries with opportunities to enhance efficiency, with automated the operational scenarios of automated lawn mowers.
mowing emerging as a prominent application. Traditional manual lawn In automated mowing, the path to cover the entire terrain is crucial
maintenance has several drawbacks. Firstly, maintaining large-size for the efficiency of the mowing task [3,4]. In the literature, the
lawns is labor-intensive and time-consuming, which brings substantial problem of determining such a coverage path is referred to as the
human costs. Secondly, human operation errors often result in irreg- Coverage Path Planning (CPP) problem, which is known to be NP-hard,
ular lawn maintenance and inefficient mowing. Lastly, lawn mowers implying that no polynomial-time algorithm is currently known for
pose certain safety risks associated with adverse weather conditions, solving it in general cases [5]. Existing CPP algorithms are effective in
tipping over on steep slopes, and hazards caused by the mower blades. indoor environments on flat surfaces [6]. However, lawn mowing often

involves outdoor environments with irregular terrain, including obsta-
cles, slopes, and dips, which bring significant safety risks. Research
shows that only 47% of cropland in the United States has less than
2% slopes; 48% of the cropland is on slopes between 2% and 10% [7].
Therefore, considering three-dimensional (3D) terrain in CPP is crucial
for enhancing mowing operations.

Automated lawn mowers offer solutions to these issues. By leveraging
trajectory planning and control algorithms from autonomous driving
technology, automated mowers can precisely execute optimal mow-
ing paths without human involvement, significantly reducing labor
costs, improving mowing efficiency, and eliminating safety hazards.
Recent advancements in autonomous driving perception technology,

* Corresponding authors.
E-mail addresses: pzhang257 @wisc.edu (P. Zhang), x1i2485@wisc.edu (X. Li).

https://doi.org/10.1016/j.robot.2025.105109

Available online 25 June 2025
0921-8890/© 2025 Published by Elsevier B.V.

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
https://orcid.org/0000-0003-3286-341X
https://github.com/CATS-Lab/Mower-CTPP-3D
https://github.com/CATS-Lab/Mower-CTPP-3D
mailto:pzhang257@wisc.edu
mailto:xli2485@wisc.edu
https://doi.org/10.1016/j.robot.2025.105109
https://doi.org/10.1016/j.robot.2025.105109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2025.105109&domain=pdf

H. Zhou et al.

Although some literature has considered 3D terrain in CPP [7,8],
significant research gaps remain. One critical issue is that these studies
focus only on path planning, without considering the robot’s speed
during movement. As a result, they overlook safety constraints caused
by varying slopes. However, when safety constraints are taken into
account—especially on irregular 3D terrains—it becomes essential to
jointly optimize both the path and the speed profile in a unified
problem. This process is referred to as trajectory planning. Traditional
CPP methods [7,8] typically assume constant speed or ignore dy-
namic feasibility. On the other hand, existing speed planning methods
such as MPC-based approaches [9-11] are often based on a given
path. These methods are insufficient to directly address the integrated
problem posed by coverage planning over complex, uneven terrains.
Therefore, new algorithm designs are required to incorporate terrain-
induced safety constraints while optimizing coverage trajectories in
such environments.

To address the above-mentioned problems, this paper proposes
the Coverage Trajectory Planning Problem on 3D Terrains (CTPP-
3DT) for automated lawn mowers and other agricultural machines,
aiming to solve the safety challenges caused by uneven terrain. In
this problem, we introduce height onto traditional two-dimensional
(2D) maps to calculate the robot’s slope along its trajectory. Safety
constraints are defined as the maximum allowable slopes for robot
movement and the speed and acceleration limits under varying slopes.
To tackle this problem, the paper presents a solution framework em-
ploying two methods. The exact algorithm determines optimal solutions
for small-size scenarios using a mixed integer linear programming
(MILP) model. This model incorporates the turning cost with a graph
expansion method. The heuristic algorithm divides the area into cells
via a tailored decomposition algorithm. Then, it generates the candi-
date coverage trajectories in each cell and the shortest trajectories to
connect them. Finally, the optimal trajectories are selected from the
candidate trajectories set to form a complete trajectory. Our problem
and solutions are not only suitable for lawn mowers but can also be
applied to other robots, such as agricultural machines. In general, the
main contributions can be summarized as follows:

» We introduce a CTPP-3DT for automated lawn mowers and other
agricultural machines. This problem aims to determine the robot’s
coverage trajectory in the 3D terrain that minimizes the comple-
tion time while satisfying the safety constraints.

We design an exact MILP model for the CTPP-3DT. A graph
expansion method is applied before solving the MILP model to
represent turning using dummy arcs.

We design a novel decomposition-based heuristic algorithm to
solve the CTPP-3DT. Several components in this algorithm, such
as the decomposition algorithm, shortest path algorithm, dynamic
programming, and local search, are tailed for the 3D problem.

The remainder of this paper is organized as follows. Section 2
reviews the related literature to CPP. Section 3 defines the 3D-CTTP.
Section 4 describes the exact method of the 3D-CTTP. Section 5 presents
the details of our proposed heuristic algorithm. Simulation results and
discussions are shown in Section 6. Section 7 concludes this paper and
provides future work.

2. Related works

There are various classifications of CPP algorithms in the litera-
ture [12-14]. Depending on whether the boundary of the area to be
traversed is mapped out in advance, CPP algorithms can be categorized
as offline or online. The latter approach, also known as sensor-based
coverage, relies on real-time sensor data from the robot to gather
information about the environment [5]. Furthermore, based on the
dimension of the space to be covered, CPP approaches may be classified
as 2D, when the robot’s motion is constrained to a plane, or 3D, with

Robotics and Autonomous Systems 193 (2025) 105109

3D coverage algorithms finding relevance in operations with unmanned
aerial vehicles (UAVs) [15-17] or autonomous underwater vehicles
(AUVs) [18].

From the perspective of solution methods, existing approaches for
2D and offline CPP can be broadly classified into two categories: exact
and heuristic methods. Exact methods aim to find optimal solutions
but often require significant computational time. Representative exact
approaches include MILP [19], spanning tree coverage [20,21], and
dynamic programming [22]. These methods are typically suitable for
indoor scenarios where the area to be covered is relatively small.
In contrast, heuristic methods aim to find feasible, though not nec-
essarily optimal, solutions in a more computationally efficient way.
One common strategy among heuristic approaches in CPP is to de-
compose the entire map into subregions, plan local paths within each
subregion, and then connect them to form a complete coverage path.
Notable decomposition-based algorithms include trapezoid decomposi-
tion [23], boustrophedon decomposition [24,25], Morse-based cellular
decomposition [26], and exact cell decomposition [27].

In real-world applications, CPP must consider many practical con-
straints, such as 3D terrain, turning time, and speed control. Some
literature addresses these constraints separately. For instance, [7] de-
veloped a 3D coverage planning approach with energy consumption
models that account for terrain inclinations to minimize energy require-
ments using a genetic algorithm. [8] tackled energy-efficient coverage
path planning on general 3D surfaces by generating geodesic Fer-
mat spiral paths. [28] proposed two greedy algorithms for CPP in
agricultural fields, where the cost function minimizes the relative ef-
ficiency, defined as the operated area divided by total time (including
turns). [29] incorporated speed control into their CPP. However, their
speed profile optimization is applied after obtaining the path plan,
separating path optimization from speed optimization.

Overall, while the above literature addresses some problem set-
tings or constraints in the CTPP-3DT, none of them comprehensively
considers all the settings in an entire problem. Most literature on 3D
terrain focuses on optimizing energy consumption for different slopes
without considering the impact of slopes on robot speed, which may
cause safety risks. Additionally, existing literature primarily focuses
on path planning and lacks joint control of speed and path, which
is essential for trajectory planning. To bridge this research gap, this
paper proposes the CTPP-3DT that considers safety constraints under
3D terrain and simultaneously optimizes the trajectory’s path and speed
profile to minimize completion time, including the turning time. To
systematically solve and investigate this problem, the MILP model and
a heuristic algorithm are proposed to solve this problem, followed by
experiments for the algorithms and the sensitivity analyses.

3. Problem definition

The CTPP-3DT considers a 3D space R?, where the X and Y axes
represent the horizontal plane and the Z axis denotes the elevation.
Within this space, the coverage region is defined as a closed surface
Gini embedded in R? (G,; € R?). Denote the position of each point
P € Gini as (py, py. p,), this means that the vertical position (p,) can be
represented as a function f of horizontal coordinates, i.e., p, = f(p,, Py)-
Since lawn mowing is usually performed periodically in fixed locations,
we assume that G;; is a static and known environment. The area G;;
contains some service areas that need to be covered, denoted as S, and
restricted areas that cannot be traversed, denoted as R. These areas are
closed and do not touch each other, which means that SN R = @. By
ignoring the elevation of the area G;,;, we discretize it into a 2D grid
consisting of square cells with side length w. The value of w can be
set to the width of the robot, which ensures that each cell can be fully
covered when the robot passes through it from any of the four cardinal
directions. A robot starts from a start point py,, € S at time 0 to cover
the entire area and eventually returns to the end point p.,q € S. We
define a path as a sequence of points. A trajectory is defined as a path

H. Zhou et al.

=

. restricted area

O node

Fig. 1. Transition from the input map G;; to the directed graph Gg;,.

D service area

along with the speed and acceleration on the path. The speed of the
robot moving from p; to p; is denoted as v;;, and the acceleration is
denoted as a;;. The slope from point p; to p; is denoted as 6;; =
The safety ranges of speed and acceleration are determined by the
slope 6;;, denoted as [0, v;;.] and [ai‘j,aj’j]. Similar to Charitidou and
Keviczky [19], this study assumes that the robot’s speed and turning
angle are discretized into finite sets U = {0, 4u,24u, ..., N Au} and
K ={0,7/2,7,37/2}, respectively. Here, U" denotes the set of feasible
speed values, K represents the set of discrete heading angles, and
Au is the speed increment. The value of N is chosen such that the
maximum feasible speed satisfies N du < max, , s v;f/. < (N +1)4u. We
assume the robot is a zero-turn robot, which must decelerate to 0 speed
before turning. We assume the time for the turn is a constant 7. The
objective of the CTPP-3DT is to determine a trajectory that minimizes
the completion time while satisfying the above safety constraints.

zj—z;

4. Exact algorithm

This section presents an exact algorithm for solving the CTPP-3DT.
The method formulates the problem as a MILP model, which can be
optimally solved using state-of-the-art solvers. Before describing the
model, we construct a directed graph using a graph expansion method
in Section 4.1 to model the robot’s turns. In Section 4.2, we describe
the decision variables, objective function, and constraints of the model.

4.1. Graph construction

The first step of the exact algorithm is to build the directed graph
based on the input map. We construct a directed graph Gy;, = (Vgir- Eqir)
for the grid map G;,;, where Vg;. represents the set of nodes and &g;,
represents the set of arcs. Each point p € S is transferred to a node
i € Vg;r- Nodes i and j € Vy;, are connected with arc (i, j) € g, if their
corresponding points p; and p; are adjacent. In particular, we denote
node iy, and i.,q as the nodes corresponding to the start and end
point pg.re and penq € Ging, respectively. Fig. 1 shows an example of
the directed graph.

To incorporate the turning time, a graph expansion method is ap-
plied to Gy;,. The main idea of this method is to create dummy arcs with
penalty costs for turns. As shown in Fig. 2, for node i € Gy;,, a dummy
node set D; = {i,i,,i3,i4} is generated. These nodes receive arcs en-
tering from different directions. For example, the dummy node j, only
receives arcs entering from dummy nodes in D;, while dummy node
k5 only receives arcs entering from dummy nodes in D;. Thus, we can
classify arcs into turning and non-turning arcs, which are represented
as dashed lines and solid lines respectively in Fig. 2. Any trajectory
containing turns must have turning arcs. For instance, the trajectory
(ig» 1) (j1, k3) includes the dashed arc (j, k3), indicating a turn at node
j- Denote the expanded directed graph as Cey, = (Vexps €exp)> Where
Vexp = Uiy, D; and &gy = {(.J)|I' € D.j’ € D;.(1.)) € Egir}. In
particular, we denote sets Dy, and D,,q as the dummy node sets for
istare @nd igqnq, respectively. We also define the set of turning arcs as

Robotics and Autonomous Systems 193 (2025) 105109

Fig. 2. Illustration of the graph expansion from g, to Gey,. The solid lines represent
the non-turning arcs, and the dashed lines represent the turning arcs.

Ewm- A complete trajectory must include at least one dummy node from
each dummy node set in Geyp.

Then we introduce two sets of parameters for the speed and accel-
eration decisions. Denote the time the robot takes to move from node
i € Veyp at speed n € U to reach speed m € U at node j € Ve,
as t;;,,, = 2w/(n + m). The turning time 1, is added to #;,, if arc
(i, j) is a turning arc. We also introduce a set of binary parameters
U;jnm to indicate whether this movement violates safety constraints. If
m € [v};, v}] or (m* —n?)/(2w) € laj;, aj;], Vyjuy = 1, otherwise v;j,, = 0.

If the robot makes two consecutive turns at nodes i and j, the speed
at both nodes is set to 0. To avoid infinite travel time, for this special
case, we assume the robot accelerates with the maximum acceleration
and then decelerates with the maximum deceleration along arc (i, j).
The travel time for such an arc (i, j) € Ve, is computed as:

1
tion=[— —
ij00 <a+ a-

1y

Note that this calculation does not include the turning time at nodes i
orj.

(€8]

4.2. A MILP model

The second step is to build the MILP model. The model contains the
following variables:

* x;; € {0,1}: binary decision variable. x;; = 1 if the robot traverses
arc (i,) € Eexp; 0 otherwise.

¥in € {0,1}: binary decision variable. y;, = 1 if the robot passes
through node i € V,,;, with speed level n € U’; 0 otherwise.

7;; € Ry: continuous decision variable. Represents the travel time
on arc (i, j) € Eu, if it is traversed by the robot; otherwise, it is
set to zero.

; € Zs: integer decision variable. Represents the sequence
number of node i € Ve, in the tour. This variable is used to
eliminate sub-tours in the routing constraints.

Xp

u

The model is constructed below:

min Z T (2)
(i:))E€exp

s.t. Z Xij = Z Xjis vie vexp/(Dstart v Dend)’ (3)
(i.))€Eexp (i)EEexp
Y X w2l Vi€ Vo lisar iena)-)
i'€D; j€Vexp

DIEDIETEIDINDVETESE ®

i€Dstart JEVexp i€Denq j€Vexp

u,.—uj+1§M(1—x,j),

Zy,»,,s 1,

nev’

Z Yio = Z yi0=l, (8)

1€Dstart i€Denq

V(i) € Eunpy ©)
Vi € Veyps 7

H. Zhou et al.

Yvazl=M[1= Y x| Vi€ Ve, C)
nev (i.))E€exp
Z Ynzl-M|1- Z X;i |, Vi €Depg, (10)
nev ()€€ exp
yiozl—M<l— Y oxy) Vi€ Ve an

()€ wrn

Vim S Vjum + M (2%, = yy,), V0,J) E€pnelU,mel, (12)

Ty 2 ijum — M (3 = Xij = Yin — yjm) , V(,j)e é'exp,n eU,mel,
(13)
x; €{0,1), V(i,)) € Euypr a4
Yin €10,1}, Vi € Vepun €V, (15)
7,20, V(i j) € Eggps (16)
u; >0, Viev, a7n

exp

The objective function (2) minimizes the total completion time.
Constraints (3)-(5) are the arc-flow constraints. In these constraints,
each dummy node can be visited at most once, but each original
node in Vg, may be visited multiple times through different dummy
nodes. This allows for potential backtracking and ensures that a feasible
solution always exists. Constraints (6) eliminate sub-tours, where M is
a large constant. Constraints (7)—-(11) are the speed control constraints.
Specifically, constraints (7) ensure that each node has only one speed
when traversed by the robot. Constraints (8) specify that the speed
at the start and end nodes is zero. Constraints (9)-(10) ensure that
a dummy node i must have a speed assigned if it is traversed by the
robot, where constraint (10) is specially designed for the case where
it is the last node in the route. Constraints (11) enforce the speed
to be zero when the robot needs to turn. Constraints (12) are the
safety constraints for speed. Constraints (13) calculate the travel time
for arc (i, j). Note that the parameters t,;,, and v;;,, used in these
constraints are computed in advance based on the methods described
in Section 4.1. Constraints (14)-(17) define the domain of the decision
variables.

5. Heuristic algorithm

While the MILP model can solve the problem to optimal, it re-
quires long computational time for large-size instances in real-world
applications. This section introduces an efficient heuristic algorithm for
the CTPP-3DT, which aims to solve the same optimization problem as
formulated in Section 4. Instead of transferring each point as a node
in the directed graph, the heuristic algorithm decomposes the map
into cells and transfers each cell as a node, which can significantly
reduce the scale of the directed map. The algorithm has three steps:
map decomposition, trajectory generation, and trajectory connection.
The following sections describe the details of these three steps.

5.1. Map decomposition

The first step of the algorithm is map decomposition. This step
aims to decompose the map into a small number of cells to reduce the
computational complexity of the next two steps. The decomposition can
be solved by algorithms proposed in the literature, such as the Bous-
trophedon Cellular Decomposition (BCD) [24,25]. However, the BCD
does not consider the safety constraints in the 3D terrain. Therefore,
we adapt the BCD to a Rotated BCD (RBCD) algorithm. We first briefly
review the BCD and then introduce details of the RBCD.

The BCD approach uses a slice to sweep the area in a certain
direction. As shown in Fig. 3, if it encounters an obstacle with a convex
boundary, the existing cell will be divided into several new cells. If
it leaves an obstacle, multiple old cells will merge into a new cell.

Robotics and Autonomous Systems 193 (2025) 105109

The cells generated by the algorithm can all be completely covered
using a Boustrophedon path (i.e., a zig-zag path) in the direction
perpendicular to the sweep direction. However, BCD cannot handle
obstacles represented by non-convex polygons, as it relies on the as-
sumption that obstacles are convex. Since the RBCD algorithm builds
upon BCD, it also inherits this limitation. A common solution in the
literature is to approximate non-convex obstacles using their minimum
bounding convex hulls, which can be computed using standard convex
hull algorithms such as the Quickhull algorithm [30].

In the CTPP-3DT, due to the influence of slopes, the completion
time for a robot to cover an entire area along different path directions
can vary significantly. In some directions, the zig-zag paths may be
infeasible if there is a steep slope along the paths. Therefore, we
modified the BCD to RBCD, which attempts to cover the map using zig-
zag paths in the optimal directions. For each direction a € A, we rotate
the map by direction a. Then, replace the steep path in the direction
that is perpendicular to @ with dummy obstacles and apply the BCD
to the map. Dummy obstacles are marked as special cells and handled
separately in the following steps. Finally, evaluate the BCD results in
each direction and select the optimal one a* to apply the BCD.

There are two key aspects to applying the RBCD. 1. Implementing
the BCD in different directions: Since rotating the map G;; yields the
same result as rotating the direction of the zig-zag path, we fix the
sweeping direction of the slice in the BCD to the horizontal right and
then rotate the map. We first construct a pixel matrix based on the
input grid map. Then, we rotate the image of the pixel matrix to obtain
the rotated pixel matrix, which serves as the rotated map. 2. Selecting
the optimal direction a*: We evaluate the BCD results by minimizing
the number of segmented cells and the number of turns in the zig-
zag path. Fewer cells indicate a better decomposition. If the number of
cells is the same, fewer turns in the zig-zag path are preferable. Fig. 4
provides an example of the RBCD process with sweep directions a = 0
and « = %77:. The top part of the figure illustrates the 3D terrain of
the target area, which includes two rectangular obstacles. In addition,
a steep slope is present at the location marked by the dashed line,
making it impossible for the robot to proceed in the direction indicated
by the arrow. As a result, when BCD is applied in the direction shown
in Fig. 4(a) (i.e.,, « = 0), a dummy obstacle is generated to account
for the impassable terrain. The bottom part of the figure presents the
resulting cell decomposition in the top view, where brown rectangles
represent dummy obstacles and black rectangles represent physical
obstacles. Since the decomposition with « = 1z produces fewer cells,
it outperforms the case with a = 0. The pseudocode in Algorithm 1
illustrates the algorithm’s process.

Algorithm 1 Map decomposition algorithm.

1: Input: map G;y;
: Initialize a* < 0, #Cell* « M, #turn* « M
: for a € A do
G, < rotate G, for a degree
¢!, < add dummy obstacles for slopes larger than the safety
slope

6: #Cell, #turn < BCD(G))

7: if (#Cell < #Cell*) or (#Cell == #Cell* and #turn < #turn*) then
8: a* « a, #Cell* < #Cell, #turn* « #turn

9: end if

10: end for

11: € < BCD(G..)
12: Output: a set of cells C

5.2. Trajectory generation

The second step trajectory generation creates trajectories that cover
cells in C and connect them. The generation is divided into three steps:

H. Zhou et al.

new cell
old
cell

new cell

a) meet the obstacle

Robotics and Autonomous Systems 193 (2025) 105109

i old cell

: new
: cell
1

i old cell

b) leave the obstacle

Fig. 3. Illustrations of the key process of the BCD algorithm when meeting and leaving an obstacle.

a) a = 0: decompose 7 cells

b)a = 1/2 m : decompose 4 cells

Fig. 4. Examples of the RBCD algorithm in two sweep directions.

(1) generating the path within cells, (2) generating the path to connect
the cells, and (3) dynamic programming for speed control.

5.2.1. Generate paths within cells

According to Section 5.1, the cells decomposed by the BCD can be
covered using zig-zag paths. Different from traditional CPP, due to the
consideration of slope effects on speed, in CTPP-3DT, the completion
time of zig-zag paths starting from different points within the same
cell may vary. Therefore, we generate four zig-zag paths starting from
the four vertices of the cell: the top-left, bottom-left, top-right, and
bottom-right corners, as the candidate paths. Fig. 5 shows an example
of zig-zag paths generated in one cell, where the yellow grid represents
the start point and the green grid represents the end point. Specifically,
for the cells generated by dummy obstacles that cannot be covered
using the zig-zag path, we divide these cells into rows and generate
only horizontal paths, as shown in Fig. 6. All the paths obtained in the
step are denoted as Zj,.

5.2.2. Generate paths to connect cells
Denote the start point and end point for path z € Z;, as pg,(2)
and pepq(z). To form a complete path, we need to find the shortest path

connecting penq(z;) and pg.(2,), where z; # z,. We use a modified A*
algorithm to search for the path between these two points.

The A* algorithm is a widely-used heuristic algorithm for the short-
est path problem [31,32]. The traditional A* uses a priority queue to
explore points with the minimum estimated cost. In our problem, the
objective is to minimize the completion time including the turning time.
To record turns, we need to check if at least three consecutive points in
the path are in a straight line. Therefore, we extend the A* algorithm’s
priority queue to include three nodes to record turns. Since we have
not yet obtained the complete path and cannot calculate the optimal
speed, we use the robot’s lowest speed to calculate travel time when
computing the shortest path.

In numerical experiments, we found that the robot’s optimal path
usually does not pass through two distant cells consecutively. There-
fore, it is unnecessary to connect the start and end points of all paths
z when calculating the shortest path. To this end, we set a maximum
span 7 for the cells when computing the shortest path. First, we build
an undirected graph for the decomposed cells, where all arcs have
a cost of 1. Then, we use the Floyd algorithm [33] to calculate the
shortest distance between cells. If the distance between two cells ¢,
and ¢, exceeds 7, we do not compute the shortest path between them.

H. Zhou et al.

Robotics and Autonomous Systems 193 (2025) 105109

‘ .

. ‘

start point

. end point

Fig. 5. Example of the four candidate zig-zag paths generated in one cell.

I I I 1 » cell 1
dummy obstacle cell
cell 2

— infeasible path — feasible path

candidate paths

start point . end point

Fig. 6. Illustration of the candidate paths for dummy obstacle cells.

The parameter 7 is given as a hyperparameter before the algorithm
runs. Notice that its value may need to be tuned to ensure feasibility,
depending on the problem instance. All the shortest paths obtained in
this step are stored in set Z ;.

5.2.3. Dynamic programming for speed control

For all paths in Z;, and Z,,, we use a dynamic programming
algorithm to determine the optimal speed. Since the robot must slow
down to zero speed at each turn, we divide each path z into sev-
eral straight-line segments £(z) at the turning points, referred to as
segments. A segment / € L(z) can be represented as a sequence of
points {p?, p,‘, ,pIQ}, where Q represents the total number of points
in segment /.

Intuitively, the optimal speed strategy within a segment is to accel-
erate to the maximum speed, maintain that speed, and then decelerate
at the end. However, the slope at each point within the segment may
vary, resulting in different speed and acceleration limits. Therefore,
we design a dynamic programming method to obtain the optimal
acceleration at each point within the segment. The key elements of
dynamic programming are defined below:

+ State: S(q,v). The time consumption from point O to point p;’
when the robot’s speed is v in point p;’.

Initial state: S(0,0) = 0. Represent that the robot starts at the
initial position with O speed.

State space transition function:

S(g+1,v) = min | S(q,u) + 2w (18)
u,a u+v
s.t. 0¥ = u? + 2aw (19)
0O<v<ovt (20)
o}
g SAS @)

11
where u is the current speed, v is the speed in the next step, a is
the current acceleration. Functions (18) aim to minimize the time
consumption by determining the optimal acceleration and speed.
Constraints (19) calculate speed v. Constraints (20) and (21) are
the safety constraints.

» Objective function: minimize the traveling time in segment /:

min.s (p2.0) 22)

With the state and transition equations defined, dynamic program-
ming can solve the problem by constructing a table that represents the
optimal solution at each state. By iteratively updating the table using
the transition equations, we can determine the optimal solution for the
speed control problem.

5.2.4. Integrate the three steps
The pseudocode in Algorithm 2 illustrates the algorithm’s process.

Algorithm 2 Trajectory generation.

1: Input: the set of cells C

2: Initialize set of paths Z;, « @, Zyy < 9

3: for cell c € C do

4: if (cell ¢ is a dummy obstacle cell) then

5: Divide each row in ¢ into individual cells and add them to C
6: Generate two horizontal paths for ¢ and add them to Z;,
7: else

8: Generate zig-zag paths for ¢ and add them to Z;,

9: end if
10: end for
11

: n < Floyd algorithm (C)
: forcell ¢; € C, ¢, € C/c; do

—_
N

13: if (;1clc2 > g) then

14: .., < modified A* algorithm (¢, c,)
15: Zout < Zout Y {chcz}

16: end if

17: end for

18: Initialize the set of speed commands U" « §

—
NeJ

: for z € Z;; U Z oy do

L(z) < Divide z to a set of segments

T « U U DP(L(z))

: end for

: Output: sets of paths Z;,, Zoy, and speed commands U'.

NN NN

H. Zhou et al.

1]

cell 2

cell 1

a) swap operator

cell 2

J:L LJI—_]_MLD

Robotics and Autonomous Systems 193 (2025) 105109

b) replace operator

I:I other cells D start point . end point

Fig. 7. Illustration of the swap operator and the replace operator.

5.3. Trajectory connection

The final step for the trajectory planning algorithm is to connect the
candidate trajectories obtained from the trajectory generation. Based on
these trajectories, we construct a directed graph Gp,q, = (Vpath,é‘path),
where vpath = {Pstart(2) Pend(@) | 2 € Zig U Zoye} and ‘gpath ={GN |
i,j € Vpammsi # j}. The cost of the arcs is the time of the trajectories.
Additionally, we set a dummy source and a dummy sink, connecting
to the trajectories corresponding to point py,.. The costs related to
the dummy source and sink are zero. This step aims to find a route
with a minimal total cost that starts from the dummy source, covers
all cells, and finally returns to the dummy sink. We use a greedy
algorithm [34,35] and a simulated annealing (SA) algorithm to solve
this TSP variant.

The greedy algorithm starts from the dummy source. It selects the
nearest node as the next visited node at each current node. When a
cell is covered, it is marked, and subsequent trajectories are prohibited
from being selected. The solution obtained by the greedy algorithm
is used as the initial solution for the SA algorithm. The principle of
SA is to iteratively apply operators to the current solution to obtain
its neighborhood solutions. It accepts the neighborhood solution that
decreases the cost and occasionally accepts solutions that increase it,
to avoid being trapped in local optima.

In our algorithm, we design two operators that are widely used in
the routing problem [36] to generate the neighborhood solutions. The
first operator is the swap operator, which exchanges the points where
two cells are covered. The second operator is the replace operator,
which replaces the zig-zag path covering a cell. The two operators are
illustrated in Fig. 7.

The probability of accepting a worse solution decreases over time,
allowing the algorithm to focus more on refining the best solution
found. For a minimization problem, the probability of accepting a
worse solution is calculated as follows:

P= e(Objcurrent_Objnew)/Tcurrent (23)

where Objyrren: 1S the objective value of the current solution, Objyew
is the objective value of the new solution, and T is the current temper-
ature. The temperature is gradually decreased according to a cooling
schedule. A common approach is to use a geometric cooling schedule,
where the temperature is updated as follows:

Thew = PTeurrent (24

where T, is the updated temperature, T,y cq: iS the current tempera-
ture, and f is a constant factor between 0 and 1, typically close to 1. The
algorithm terminates once T, ey drops below a predefined threshold
Tmin'

Finally, Algorithm 3 presents the pseudocode of the trajectory con-
nection algorithm. Here swap(.) and replace(.) represent the swap and
replace operators, and Obj(.) represents the objective value, i.e., the
total travel time.

Algorithm 3 Trajectory connection algorithm.

1: Input: sets of paths Z;,, Zo,, and speed commands U".

: Initialize vpath < {Pstart(2), Pend(2) | 2 € Zin U Zoue}s gpath < {01
i,j € Vpath»i #Jj} and weight() < the travel time calculated from
U.

3: Initialize a queue J with only the dummy sink. Denote the last node

in J as J[0].

while J does not cover all cells do

€OSt iy < 0, ipaye < None.
for (J[0]. /) € Eparn do

if The cell of node j is not visited in J and weight(J[0], j) <

then

costin < weight(J[01, j), inext < J-
9: end if

10: end for

11: J < J Ulpext-

12: end while

13: Initialize Toyprene and Jope < J-

14: while T rene = Trin do

15: Tnew < swap(J) and replace(J).

N

N g R

coStin

4

16: if ©0bi(TI)=0bi(Tnew)/T > random(0, 1) then
17: J < Tnew-

18: end if

19: if 0bj(J) < Obj(Jop) then

20: Jopt < J-

21: end if

22: Tnew -« ﬁTcurrent‘
23: end while

24: Output: path sequence Jopt-

H. Zhou et al.

Robotics and Autonomous Systems 193 (2025) 105109

Table 1

Mower parameters used in the experiment.
Description Value Unit
Safe slope range [—30%,30%] Grade
Maximum speed 3.5 m/s
Acceleration range (on [0%, 10%] slope) [-2.5,1.25] m/s?
Acceleration range (on [10%,30%] slope) [-1.4,0.6] m/s?
Turning time 2 H

6. Experimental results

This section presents the instance sets and analyzes the performance
of the MILP model and the algorithm. Our algorithm was coded in Java
programming language using ILOG CPLEX 12.6.3 as the solver. The
experiments were conducted on a machine equipped with a 3.2 GHz
AMD Ryzen 7 7735HS with Radeon Graphics CPU and 16 GB of
memory under the Windows 11 operating system.

6.1. Experimental settings

To evaluate the effectiveness of our model and algorithm, we design
an algorithm to randomly generate large-size instances for the CTPP-
3DT, which also serve as the benchmark instances for future study. The
instance generation algorithm contains four steps:

1. Create a 2D binary matrix where each pixel is randomly set
to O (service area) or 1 (restricted area) based on the obstacle
probability o.

2. Apply the cellular automata algorithm to smooth the binary
map, ensuring obstacle connectivity and realistic terrain.

3. Create a height matrix where each pixel is assigned a random
value between 0 and £ if it is not an obstacle, where 4 is the
highest height of the map.

4. Apply the Gaussian blur algorithm to the height matrix to ensure
realistic terrain transitions.

Particularly, we set the start point and the end point at the same
position, as in practical applications, the mower is expected to return
to its initial position for retrieval.

We generated two sets of instances, small-size and large-size, to test
the MILP model and the heuristic algorithm. To test the performance
of the MILP model in different sizes, the small-size set includes ten
instances with sizes 4 x 4 m?, 6 x 6 m?, ..., and 13 x 13 m?, with
parameters ¢ = 0.3 and 4 = 1.0 are manually generated. The large-size
set includes three sizes, 50 x 50 m? and 100 x 100 m?. For each size,
four sets of instances are generated with different parameter settings:

= 0.32,0.35 and 2 = 1.0,1.2. Three instances are generated by the
algorithm for each parameter setting, resulting in 36 instances. The
instances are named as “/length_width_oc_h_I D”, representing the length,
width, parameter o, parameter A, and the instance ID. Fig. 8 shows one
of the 100 x 100 instances. Besides, the research team collaborated
with an anonymous company to obtain parameters for the mower.
Detailed parameters of the mower can be found in Table 1. The speed
increment is set to Au = 0.35 m/s, resulting in a maximum number of
speed levels N = 10 in the set U".

In the following test, the time limit on each run of the MILP model
was set to 3600 s for instances smaller than 10 x 10, and 7200 s for
larger instances. For the heuristic algorithm, we run each instance five
times and report the best objective value along with the variance. In
the SA, we set the initial temperature as 100, the cooling rate g = 0.99,
and the maximum iteration for the algorithm as 100. 77 = 20 and 40 for
50 x 50 and 100 x 100 instances, respectively. Our code and data are
available at https://github.com/CATS-Lab/Mower-CTPP-3D.

Table 2
Comparison of MILP model and the heuristic algorithm on small-size instances.
Instance MILP Heuristic A
UB LB #Node Time Gap Obj Time
4.4.0.3.1.0.0 15.67 15.67 50,066 6 0.00 31.53 0.16 50.31

550.3.1.00 31.42 31.42 1058,801 65 0.00 46.93 0.11 33.06
6.6.0.3.1.0.0 42.54 36.44 22,212,925 3600 14.35 52.55 0.00 19.05
7.7.0.3.1.0.0 54.09 40.06 14,150,324 3600 25.93 76.35 0.00 29.16
8.8.0.3.1.0.0 48.70 23.44 7234,851 3600 51.87 71.99 0.00 32.35
99.0.3.1.0.0 58.64 36.05 7823,501 3600 38.53 108.13 0.01 45.77
10.10.0.3.1.0.0 87.20 52.43 14,007,681 7200 39.87 133.05 0.01 34.46
11.11.0.3.1.0.0 76.82 40.68 13,283,736 7200 47.04 144.22 0.01 46.74
12.12.0.3.1.0.0 111.46 38.41 16,844,730 7200 65.54 159.81 0.11 30.25
13.13.0.3.1.0.0 206.52 9.64 6528,749 7200 95.33 164.09 0.11 -25.86

Average 58.50 32.42 10,319,536 4327 37.85 98.86 0.05 35.68
1.0
01 -F'—-'-——'I--'JF—j
- - ol L di & . i
201 g - _i ii 0.8
e g S
40' E [} ‘ F; 4 06 -
I . » 5,
60 e B
i ‘f = *' .|.' _.. ’
80 i
L T 0.2
-
1001 Eilelas il +_..* i
0 20 40 60 so 100 00

Fig. 8. The map of instance 100_100_0.35_1.0_1 generated by the instance generation
algorithm (unit: m).

6.2. Performance comparison between the MILP and the heuristic algorithm
on small-size instances

Table 2 reports the results of the MILP model and heuristic algo-
rithm on small-size instances. The first column displays the instance
names. Columns U B and L B represent the best upper and lower bounds
for the MILP model. Column #Node is the number of nodes explored
in the B&B (branch and bound) tree in the MILP model. Column Gap
is the percentage difference between the best upper bounds and the
lower bound. Column Time reports the time in seconds consumed to
solve one instance. Specifically, Gap = (UB — LB)/U B x 100. Column
Obj represents the objective values of the heuristic algorithm, where
the objective function is equivalent to the MILP model of columns
UB and LB. Column 4 is the percentage gap of the objective values
between the MILP model and the heuristic algorithm, calculated as
A= (0bj — UB)/Obj x 100.

Table 2 shows that the MILP model can only solve 4 x 4 and
5 x 5 instances to optimality within the time limit. It also obtains
good solutions for instances smaller than 13 x 13 with better quality
than the heuristic algorithm. However, for the 13 x 13 size instance,
the upper bound solution obtained by the MILP is of lower quality
than the solution found by the heuristic algorithm. Notably, CPLEX
has explored a large number of B&B nodes for this problem, averaging
10319536. As the instance size increases, the time the MILP model
takes to solve each B&B node also increases, leading to an exponential
growth in computation time. Compared to the results of the MILP
model, the heuristic algorithm’s objective values increase by about
36%, but it solves all instances within 0.2 s. Therefore, in terms of

https://github.com/CATS-Lab/Mower-CTPP-3D

H. Zhou et al.

Robotics and Autonomous Systems 193 (2025) 105109

Table 3 Table 5
Performance of the heuristic algorithm on 50 X 50 size instances. Performance of the heuristic algorithm on 125 x 125 size instances.
Instance Obj Var #turn [Time Instance Obj Var #turn [Time
0.32.1.0.0 1688.0 2.8 189 2.01 2.6 0.32.1.00 8308.2 85.8 538 2.29 71.8
0.32_1.0_1 1489.6 4.8 134 2.16 0.7 0.32.1.0_1 8335.2 78.4 545 2.29 68.6
0.32.1.0_2 1566.6 9.9 151 212 0.6 0.32.1.0.2 8549.5 58.6 616 2.26 81.0
0.32.1.2.0 1293.3 31.3 144 200 24 Average 8397.6 74.3 566 2.28 73.8
0.321.21 1612.3 168.8 154 2.12 1.8
0.32.1.2.2 1516.6 0.0 145 2.10 1.4
0.35.1.0.0 1706.5 100.3 192 2.00 2.9 Table 6
0.35.1.0.1 1705.6 0.0 196 2.00 2.5 Comparison between turning angle sets K, (minimum turning angle %7[) and K,
0.35.1.0_2 1764.7 0.0 211 1.97 3.5 (minimum turning angle .
0.35.1.2.0 1826.2 9.8 223 1.93 1.4 4
0.35.1.2_1 1726.8 3.5 195 2.01 1.5 Instance K, K,
0.35.1.2.2 1789.9 0.0 213 1.94 1.5 Obj #turn o Time Obj #turn o Time
Average 1640.5 13.8 179 2.03 19 0.321.00 16880 189 201 26 16248 222 244 2.0
0.32.1.0.1 1489.6 134 2.16 0.7 1319.5 140 2.72 0.4
0.32.1.0.2 1566.6 151 2.12 0.6 1389.7 151 2.68 0.7
Table 4 ») o 0.321.20 12933 144 200 2.4 11825 164 242 3.4
Performance of the heuristic algorithm on 100 x 100 size instances. 0321.21 1612.3 154 212 18 1446.3 166 2.67 1.3
Instance Obj Var #turn 0 Time 0.32.1.22 1516.6 145 210 1.4 1564.2 189 260 1.8
0.321.00 5792.5 101.5 464 2.21 85.6 0.35_.1.00 1706.5 192 2.00 2.9 1643.4 231 2.39 1.9
0.32_1.0_1 5847.7 62.2 468 2.21 97.6 0.35.1.0_1 1705.6 196 2.00 2.5 1593.4 216 2.44 1.7
0.32_1.0_2 5690.5 10.2 427 2.23 65.0 0.35_.1.0.2 1764.7 211 1.97 3.5 1713.0 233 2.43 3.2
0‘32_1.2_0 5695.7 0.0 438 2.22 54.1 0.35.1.20 1826.2 223 1.93 1.4 1703.0 221 2.40 1.8
0.32_1.2_1 5903.1 26.1 454 2.21 61.8 0.35.1.2_1 1726.8 195 2.01 1.5 1620.6 212 2.49 2.1
0.32_1‘2_2 5994.8 220.9 507 2.19 38.5 0.35.1.2.2 1789.9 213 1.94 1.5 1705.5 223 2.39 1.9
0.35.1.0.0 6099.3 0.0 544 2.16 98.8 Average 1640.5 179 2.03 1.9 1542.2 197 251 1.8
0.35.1.0_1 6284.3 74.0 577 2.14 86.4
0.35.1.0_2 6168.8 59.0 570 213 71.6
0.35.1.2.0 6252.4 61.0 550 2.14 91.5
0.35.1.2.1 6443.7 0.0 625 209 63.9 turns is higher, the robot needs to decelerate to zero more frequently,
0.35.1.22 6352.7 31.3 592 2.12 86.0 .
reducing the average speed.
Average 6043.8 53.9 518 2.17 75.1

solution quality, the MILP model results are much better. However,
in terms of computation time, the heuristic algorithm can solve the
problems much faster. Therefore, we recommend using the MILP model
for problems of approximately 13 x 13 in size and heuristic algorithms
for larger-size problems.

6.3. Performance of the heuristic algorithm on large-size instances

The heuristic approach is applicable in tackling large-size instances.
Tables 3-4 show the results of our heuristic algorithm on large-size
instances with 50 x 50 and 100 x 100 maps. Column Ob; represents the
optimal objective values among the five test runs. Column V ar repre-
sents the variance of objective values among the five test runs. Column
#turn is the number of turns of the solution. Column & is the average
speed of the solution. Column T'ime represents the computational time.

Tables 3 and 4 show that our algorithm has a very fast computation
speed. Specifically, for 50 x 50 instances, the instances are solved
within 2 s, and for 100 x 100 instances, the instances are solved within
1 min. Analyzing the instance generation parameters, the average
computational time for obstacle probability ¢ = 0.32 and ¢ = 0.35
on 50 x 50 and 100 x 100 size instances are 1.6, 2.2, 67.1, and
76.4 s, respectively. This result indicates that an increase in obstacles
significantly increases the complexity of the problem. The average
computational time for height parameter 4 = 1.0 and 2 = 1.2 on 50 x 50
and 100 x 100 size instances are 2.1, 1.7, 85.8, and 66.0 s, respectively,
showing no significant difference. Additionally, the values in column
Var indicate that the variance across multiple runs is generally small,
and in some cases, it is even zero. This suggests that the solution
quality of the heuristic algorithm is relatively stable, which can be
attributed to the fact that the randomness only arises from the SA
component. Finally, we find a relationship between the number of turns
and computational time. The Pearson correlation coefficients between
column Time and column #turn, and column & are 0.97, indicating
a positive correlation for these two variables. When the number of

To explore the computational limits of our algorithm, we con-
ducted additional experiments on larger instances, including 125 x 125,
150 x 150, and 200 x 200 grids. For the 125 x 125 instances, the
heuristic algorithm was still able to produce solutions within 2 min.
Compared to the 100 x 100 cases, the variance of the results in-
creased slightly but remained below 100 on average. Detailed results
are provided in Table 5.

However, for instances of size 150 x 150 and above, we observed
that the algorithm failed to complete due to memory limitations during
the execution of the A* search in Algorithm 2. This is due to the
significantly larger search space introduced by point-to-point planning
with additional constraints such as turning time. We therefore recom-
mend replacing this component with a more memory-efficient heuristic
shortest path algorithm [37] when solving extremely large instances.

6.4. Impact of the turning angles

In the CTPP-3DT problem, the discretized set of feasible turn-
ing angles K constrains the possible trajectories of the robot. It is
therefore important to explore how the granularity of turning an-
gles affects both the objective value and the computational efficiency
of the algorithm. To investigate this, we conduct experiments on
50 x 50 instances using two angle sets: £; = {0, %ﬂ', 7, %7[} and K, =
{O’AIT”’ %7[, %n, T, %n, %n, %n}, which correspond to minimum turning
angles of %7[and }tn-, respectively.

As shown in Table 6, refining the turning angle granularity (i.e., al-
lowing more flexible directions) leads to improvement in objective
values across all instances. On average, the completion time decreases
by 5.99%. Interestingly, the number of turns increases with X’,, but the
robot’s average speed also increases. This suggests that more flexible
turning enables longer and faster straight-line motions, which offsets
the cost of additional turning. In terms of computation time, we observe
no significant increase. In some cases, the runtime even decreases. This
is because the turning angles primarily affect the trajectory connection
phase, where a modified A* algorithm is used. While more turning
options introduce more branching, the overall complexity remains low

H. Zhou et al.

due to the heuristic nature of A*. However, for angle sets with finer
resolution (i.e., minimum turning angle smaller than z/4), a denser grid
(smaller cell width w) may be required to accurately represent feasible
paths. For most use cases, we recommend choosing /2 or = /4 based
on the mechanical capabilities of the robot.

6.5. Comparison between different CTPP strategies

The most important features of our CTPP-3DT are the incorporation
of safety constraints and a time-aware objective function. As discussed
in the introduction and literature review, many existing studies neglect
the necessity of safety constraints, which may result in dangerous
trajectories. Moreover, some of the literature focuses on minimizing
energy consumption rather than completion time. To explore the trade-
off between minimizing time and energy, we develop and compare four
strategies based on variations of our proposed algorithm:

+ Original Strategy: This strategy optimizes speed and accelera-
tion within safety limits to minimize total completion time, as
introduced in previous sections.

Conservative Strategy: To ensure absolute safety during move-
ment, this strategy uses the most conservative speed and acceler-
ation values during trajectory planning (e.g., maximum accelera-
tion is limited to 0.6 m/s?).

Aggressive Strategy: This strategy ignores safety constraints by
removing limits related to maximum safe slope and the speed/
acceleration bounds on steep terrain (e.g., maximum acceleration
is allowed up to 1.25 m/s?).

Energy-aware Strategy: This strategy respects the safety con-
straints, but modifies the objective function to minimize energy
consumption instead of the completion time. Since there is no
widely accepted energy consumption model for mowers in the
literature, we adopt an energy consumption model for agricultural
machines proposed in [38], given that our CTPP-3DT has broad
applications in agricultural domains. Specifically, the power is
modeled as a function of speed:

P@) =(p +v-w-p2)+(p3+d~u2~p4)w
+ (0.115M - v-a/3600) + Py, + (g-m-v-r,/1800), (25)

where P is the required power (kW), v is the robot speed (km/h),
w is the working width (m), d is the working depth (set to 0),
M is the total vehicle and implement mass including the tank
load (kg), m is the implement mass (kg), a is the inclination of
the terrain (%), g is the gravitational acceleration (9.81 m/sz),
P,;; is the power for air conditioning and compressors (kW), and
. is the rolling resistance coefficient (set to 0.06). Constants
p, = —02683, p, = 0.06775, p, = 4.55752, and p, = 0.03141
are equipment-specific parameters, which we follow the example
values in [7].

r

To convert the objective to energy minimization, the dynamic program-
ming cost function Eq. (18) is modified as follows:

2w]
u+vl’

S(q+1,v) = r{‘nan S(q,u)+ P(u) - (26)

Following the same experimental setup as before, we test all four
strategies on 50 x 50 size instances. Each instance is run five times,
and we report the best objective value from the five runs. The vari-
ances observed are consistent with those reported in Section 6.3, and
therefore, we do not report variance in this section for simplicity.

Fig. 9(a) compares the completion time and energy consumption of
the four strategies on 50 x 50 size instances. It can be observed that
both the completion time and energy consumption of the conservative
strategy are significantly higher than those of the other three strate-
gies by more than 100%. This indicates that adopting a conservative

10

Robotics and Autonomous Systems 193 (2025) 105109

approach to ensure absolute safety severely compromises operational
efficiency.

To better examine the differences among the remaining three strate-
gies, we provide a zoomed-in view on the right side of Fig. 9(a). The
results show that the performance of the energy-aware strategy is very
close to that of the time-aware strategy (i.e., the original strategy).
Although power consumption is positively correlated with robot speed,
increasing speed also reduces the overall operation time, which in turn
lowers total energy consumption. This indicates that in some cases,
minimizing energy usage and minimizing completion time are not con-
flicting objectives but can be aligned. Specifically, when the marginal
increase in power due to higher speed is offset by the reduction in
operation time, both energy-aware and time-aware strategies may yield
similar results.

The difference between the aggressive and original strategies is also
smaller compared to the gap between the conservative strategy and
others. On average, the completion time of the aggressive strategy is
approximately 2.9% shorter than that of the original strategy. However,
we observe that the aggressive strategy violates safety constraints an
average of 69.1 times per instance, indicating that it frequently places
the robot in unsafe conditions. To further investigate the differences
between the aggressive and original strategies under varying terrain
conditions, we generated five additional instances with steeper terrain
(h = 1.3 m, size 50 x 50). The results are shown in Fig. 9(b). Compared
to the flatter terrain in Fig. 9(a), the performance gap between the
two strategies widens under steeper conditions. In this case set, the
average completion time difference increases to 6.5%, and the number
of safety constraint violations by the aggressive strategy rises to 91.4.
Overall, the results show that in steeper terrains, the aggressive strategy
achieves faster coverage at the cost of significantly higher safety risk.
This demonstrates the necessity of incorporating safety constraints
in trajectory optimization. The original strategy effectively balances
safety and efficiency, keeping the overall completion time within an
acceptable range while ensuring safe operation.

6.6. Sensitivity analyses

Since our CTPP-3DT is a new variant of the CPP, we conduct
sensitivity analyses on key parameters, including the maximum safety
slope 6*, the speed and acceleration limit v+ and a«*, and turning time
tum» tO investigate the characteristics of this variant. Experiments are
performed on 50 x 50 size instances.

Speed and acceleration limit. Speed and acceleration limits affect
the robot’s moving speed, thereby influencing its operational efficiency.
When the robot moves faster, its efficiency improves. We analyze the
influence of these parameters by testing three settings, which represent
low, medium, and high levels of robot performance. The detailed
parameters for each setting are provided in Table 7. Fig. 10 shows
the results under these three parameter settings. It shows that when
the robot is set to the medium speed mode, the average completion
time decreased from 1644.5 to 1430.8, a reduction of 13.0%. The
robot’s average speed increased from 2.03 to 3.34, an improvement
of 33.0%. When the robot is further adjusted to the fast mode, the
completion time continues to decrease by 12.5%, and the average
speed increases by 24.0%. This conclusion indicates that increasing
speed and acceleration can significantly enhance the robot’s operational
efficiency.

Turning time. Now, we study the impact of the robot’s turning
time. From Tables 3-4, we can observe that covering 50 x 50 and
100 x 100 size instances requires an average of 198 and 580 turns,
respectively, indicating that turning time significantly affects the total
time consumption. Therefore, we tested the results for ., = 2,1, and
0.5. As shown in Fig. 11, the average completion time significantly
reduces when 1, decreases. When 1, decreases from 2S to 1S,
the average completion time decreases by 11.3%, i.e., 185.3. When
twurn decreases from 1S to 0.5S, the average completion time decreases

H. Zhou et al.

Robotics and Autonomous Systems 193 (2025) 105109

2993.2 3.96

3000 1 r4.0
3:5
2500 A
o~ 3.0 =
0001 =+ 1700
o) (058 2.05
RS 1650.3 1644.5 =
g 1650.3 1644.5 1596.4 2 £
= 1.97 S 2 2.00
o 500+ : r2.0 2 ~—1600 R
e & & g
k> 5 E 1.95 &
Q 1.5 &n =
& 000 5 §1500 2
3 s B 1903
O 1.0 % " =
A 1400 5]
500 L ihs 8 1.85 5
0- L0.0 1300 o - 1.80
Conservative Energy-aware Original ~ Aggressive Energy-aware Original Aggressive
Strategy Strategy Strategy Strategy Strategy Strategy ~ Strategy
a) Average results for instances with h = 1.0 and 1.2m
3026.4 4.09
3000 1 L4.0 2.05
1600113960 1590.1 g
35 @ 2.00%
2500 1 i © =
» = E ke
\Q-; 3405 z 1500 1.95 %‘
& 2000 = .9 z
= 1252 © 1.903
1596.0 1590.1 & & >
= : £ £1400 20
© | i 1487.3 = =
'*8 1500 1.96 1.97 187 | [2.0 é 8 1.855)
a @)
g 15 & 1.80
5 1000 5 g L . L
O & nergy-aware Qriginal Aggressive
1.0 Strategy Strategy ~ Strategy
500+
r0.5
. o - 0.0
Conservative Energy-aware Original Aggressive
Strategy Strategy Strategy Strategy
b) Average results for instances with h = 1.3m
Fig. 9. Comparison between the four CTPP strategies in 50 x 50 size instances.
Table 7
Three speed and acceleration parameter settings for the sensitivity analyses.
Description Setting 1 Setting 2 Setting 3
Maximum speed (m/s) 3.5 5.0 6.5
Acceleration range on [-0.1,0.1] slope (m/s?) [-2.5,1.25] [-2.5,1.7] [-2.5,2.2]
Acceleration range on [-0.3,-0.1] U [0.1,0.3] slope (m/s®) [-1.4,0.6] [-1.4,1.0] [-1.4,1.4]

by 3.0%, i.e., by 43.5. These reductions are slightly greater than the
decrease in turning time, indicating that reducing f,, allows the
algorithm to find more efficient trajectories.

Maximum safety slope. In CTPP-3DT, the maximum safety slope
0% influences the range of the robot’s movement. We analyze the influ-
ence of this parameter by changing its value from 0.3 to 0.4 and 0.5.
Fig. 12 shows the results under different values of 8. We can observe
that when 6% = 0.4, the average objective function value is slightly
lower than that for §* = 0.3. However, the results for 6% = 0.5 are very
close to those for 6% = 0.4. This indicates that increasing the maximum
safety slope can enhance the robot’s operational efficiency, but the
marginal benefits of further increasing the maximum safety slope with

11

current technology are limited. These limited marginal benefits could
be due to the smoothing of map heights in our instances.

7. Conclusion

To address the safety challenges of automated mowing on uneven
terrain, this paper proposes the CTPP-3DT for automated lawn mow-
ers and other agricultural machines. In this problem, we introduce
height onto traditional 2D maps to calculate the robot’s slope along
its trajectory. Safety constraints are defined as the maximum allowable
slopes for robot movement and the speed and acceleration limits under
varying slopes. The problem aims to determine the optimal path and

H. Zhou et al.

1600 329
F3.00
1500 1
- F2:75
e) |
3 >
1400 1 F2.50
12.25
13001
2.00 1252.6 200
Settfng 1 Settfng 2 Settfng 3
speed and acceleration limit
Fig. 10. The impact of the speed and acceleration limit.
16501 . |2.010
1600 1 r2.008
1550+ F2.006
) |
3 >
1500 [
F2.002
14501
2.00 1415.7~ }2.000
2.0 1.0 0.5
turning time (s)
Fig. 11. The impact of the maximum turning time.
F2.05
1640 A
F2.04
1630 1 F2.03
i) i
3 >
F2.02
1620 1
F2.01
1610
2.00 16078y |900

0.4 0.5

maximum safety slope

03

Fig. 12. The impact of the maximum safety slope.

speed that minimizes the completion time while satisfying the safety
constraints.

To tackle this problem, the paper presents a solution framework em-
ploying two methods. The exact algorithm determines optimal solutions
for small-size scenarios using a MILP model based on a graph expansion
method to represent turning using dummy arcs. The heuristic algorithm
divides the area into cells via a tailed RBCD. The candidate trajectories

12

Robotics and Autonomous Systems 193 (2025) 105109

to cover and connect cells are generated based on a modified A* algo-
rithm and dynamic programming. Finally, an SA algorithm is applied
to select the optimal trajectories in the candidate trajectory set.

Experiments are conducted based on the instances generated by a
random algorithm. The results show that: (a). The MILP model performs
well for instances smaller than 13 x 13, while the heuristic algorithm is
more effective for larger instances. (b). Incorporating safety constraints
in the CTPP-3DT avoids the potentially dangerous trajectories observed
in the aggressive strategy, while achieving over a 40% reduction in
completion time compared to the conservative strategy. This highlights
that incorporating safety constraints can significantly improve both
safety and efficiency. (c). Increasing the mower’s movement speed,
acceleration, and turning speed can significantly reduce completion
time, though the benefits of increasing the safety slope need further
testing with real-world data.

As a potential direction for future work, more scalable exact meth-
ods such as dynamic programming, spanning tree decomposition, or
branch-and-cut algorithms could be explored. These approaches may
help improve solution quality or provide theoretical guarantees without
incurring the computational cost of solving large-scale MILPs. Besides,
although we conducted a preliminary comparison between the energy-
aware and time-aware strategies in the experimental section, the energy
consumption model used may differ from that of actual lawn mowers,
both in terms of model structure and parameter settings. For example,
the energy model adopted in this study does not account for the effect
of acceleration, which is an important factor in vehicle dynamics and
has been highlighted in literature [39]. Moreover, the energy-aware
strategy considered in this study is not a fully tailored algorithm for op-
timizing energy consumption. Comparisons with more advanced energy
optimization approaches from the literature may yield different results.
On the hardware side, considering the differences between generated
instances and real-world data, we plan to test the algorithm using real-
world data instead of randomly generated instances. We aim to develop
a perception system based on RGB-D cameras and a mapping algorithm
for the localization of the mower and collect real-world data for testing.

CRediT authorship contribution statement

Hang Zhou: Writing - review & editing, Writing — original draft,
Visualization, Validation, Methodology. Peng Zhang: Writing — re-
view & editing, Validation, Formal analysis, Data curation, Concep-
tualization. Zhaohui Liang: Writing — review & editing, Validation,
Formal analysis, Data curation. Hangyu Li: Writing — review & edit-
ing, Validation, Formal analysis, Data curation. Xiaopeng Li: Writing
- review & editing, Supervision, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code will be opened after the acceptance of this paper.

References

[1] M. Skocze, M. Ochman, K. Spyra, M. Nikodem, D. Krata, M. Panek, A.
Pawlowski, Obstacle detection system for agricultural mobile robot application
using RGB-d cameras, Sensors 21 (16) (2021) 5292.

A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, N. Roy,
Visual odometry and mapping for autonomous flight using an RGB-d camera, in:
Robotics Research: The 15th International Symposium ISRR, Springer, 2017, pp.
235-252.

[2]

http://refhub.elsevier.com/S0921-8890(25)00206-4/sb1
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb1
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb1
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb1
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb1
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb2

H. Zhou et al.

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

I.LA. Hameed, A. la Cour-Harbo, O.L. Osen, Side-to-side 3D coverage path plan-
ning approach for agricultural robots to minimize skip/overlap areas between
swaths, Robot. Auton. Syst. 76 (2016) 36-45.

H. Nagar, A. Paul, R. Machavaram, P. Soni, et al., Reinforcement learning particle
swarm optimization based trajectory planning of autonomous ground vehicle
using 2D LiDAR point cloud, Robot. Auton. Syst. 178 (2024) 104723.

S. Dogru, L. Marques, ECO-CPP: Energy constrained online coverage path
planning, Robot. Auton. Syst. 157 (2022) 104242.

E. Galceran, M. Carreras, A survey on coverage path planning for robotics, Robot.
Auton. Syst. 61 (12) (2013) 1258-1276.

L.A. Hameed, Intelligent coverage path planning for agricultural robots and
autonomous machines on three-dimensional terrain, J. Intell. Robot. Syst. 74
(3) (2014) 965-983.

C. Wu, C. Dai, X. Gong, Y.J. Liu, J. Wang, X.D. Gu, C.C. Wang, Energy-efficient
coverage path planning for general terrain surfaces, IEEE Robot. Autom. Lett. 4
(3) (2019) 2584-2591.

Y. Ding, L. Wang, Y. Li, D. Li, Model predictive control and its application in
agriculture: A review, Comput. Electron. Agric. 151 (2018) 104-117.

J. Backman, T. Oksanen, A. Visala, Navigation system for agricultural machines:
Nonlinear model predictive path tracking, Comput. Electron. Agric. 82 (2012)
32-43.

P. Zhang, H. Huang, H. Zhou, H. Shi, K. Long, X. Li, Online adaptive platoon
control for connected and automated vehicles via physics enhanced residual
learning, Transp. Res. C 178 (2025) 105242, http://dx.doi.org/10.1016/j.trc.
2025.105242.

M. Hoffmann, S. Patel, C. Biiskens, Optimal guidance track generation for
precision agriculture: A review of coverage path planning techniques, J. Field
Robot. 41 (3) (2024) 823-844.

C.S. Tan, R. Mohd-Mokhtar, M.R. Arshad, A comprehensive review of coverage
path planning in robotics using classical and heuristic algorithms, IEEE Access
9 (2021) 119310-119342.

L.C. Santos, F.N. Santos, E.S. Pires, A. Valente, P. Costa, S. Magalhdes, Path
planning for ground robots in agriculture: A short review, in: 2020 IEEE Inter-
national Conference on Autonomous Robot Systems and Competitions, ICARSC,
IEEE, 2020, pp. 61-66.

E.V. Vazquez-Carmona, J.I. Vasquez-Gomez, J.C. Herrera-Lozada, M. Antonio-
Cruz, Coverage path planning for spraying drones, Comput. Ind. Eng. 168 (2022)
108125.

A. Garg, S.S. Jha, Learning continuous multi-UAV controls with directed
explorations for flood area coverage, Robot. Auton. Syst. 180 (2024) 104774.
B. Narottama, S.Y. Shin, et al., UAV coverage path planning with quantum-based
recurrent deep deterministic policy gradient, IEEE Trans. Veh. Technol. (2023).
G. Han, Z. Zhou, T. Zhang, H. Wang, L. Liu, Y. Peng, M. Guizani, Ant-
colony-based complete-coverage path-planning algorithm for underwater gliders
in ocean areas with thermoclines, IEEE Trans. Veh. Technol. 69 (8) (2020)
8959-8971.

M. Charitidou, T. Keviczky, An MILP approach for persistent coverage tasks with
multiple robots and performance guarantees, Eur. J. Control 64 (2022) 100610.
Y. Gabriely, E. Rimon, Spanning-tree based coverage of continuous areas by a
mobile robot, Ann. Math. Artif. Intell. 31 (2001) 77-98.

N. Hazon, G.A. Kaminka, Redundancy, efficiency and robustness in multi-robot
coverage, in: Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, IEEE, 2005, pp. 735-741.

P. Zhou, Z.m. Wang, Z.n. Li, Y. Li, Complete coverage path planning of
mobile robot based on dynamic programming algorithm, in: 2nd International
Conference on Electronic & Mechanical Engineering and Information Technology,
Atlantis Press, 2012, pp. 1837-1841.

R.N. De Carvalho, H. Vidal, P. Vieira, M. Ribeiro, Complete coverage path
planning and guidance for cleaning robots, in: ISIE’97 Proceeding of the IEEE
International Symposium on Industrial Electronics, 2, IEEE, 1997, pp. 677-682.
H. Choset, P. Pignon, Coverage path planning: The boustrophedon cellular
decomposition, in: Field and Service Robotics, Springer, 1998, pp. 203-209.

H. Choset, Coverage of known spaces: The boustrophedon cellular decomposition,
Auton. Robots 9 (2000) 247-253.

E.U. Acar, H. Choset, A.A. Rizzi, P.N. Atkar, D. Hull, Morse decompositions for
coverage tasks, Int. J. Robot. Res. 21 (4) (2002) 331-344.

S.C. Wong, B.A. MacDonald, A topological coverage algorithm for mobile
robots, in: Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 2, IEEE, 2003, pp.
1685-1690.

T. Oksanen, A. Visala, Coverage path planning algorithms for agricultural field
machines, J. Field Robot. 26 (8) (2009) 651-668.

A. Selek, M. Seder, M. Brezak, I. Petrovi¢, Smooth complete coverage trajectory
planning algorithm for a nonholonomic robot, Sensors 22 (23) (2022) 9269.
C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Trans. Math. Softw. (TOMS) 22 (4) (1996) 469-483.

P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107.
F. Duchori, A. Babinec, M. Kajan, P. Beflo, M. Florek, T. Fico, L. JuriSica, Path
planning with modified a star algorithm for a mobile robot, Procedia Eng. 96
(2014) 59-69.

13

[33]
[34]

[35]

[36]

[37]

[38]

[39]

Robotics and Autonomous Systems 193 (2025) 105109

R.W. Floyd, Algorithm 97: shortest path, Commun. ACM 5 (6) (1962) 345-345.
H. Zhou, H. Qin, C. Cheng, L.M. Rousseau, An exact algorithm for the two-
echelon vehicle routing problem with drones, Transp. Res. Part B: Methodol.
168 (2023) 124-150.

H. Zhou, H. Qin, Z. Zhang, J. Li, Two-echelon vehicle routing problem with
time windows and simultaneous pickup and delivery, Soft Comput. 26 (7) (2022)
3345-3360.

H. Zhou, Y. Li, C. Ma, K. Long, X. Li, Modular vehicle routing problem:
Applications in logistics, Transp. Res. Part E: Logist. Transp. Rev. 197 (2025)
104022.

L. Fu, D. Sun, L.R. Rilett, Heuristic shortest path algorithms for transportation
applications: State of the art, Comput. Oper. Res. 33 (11) (2006) 3324-3343.
N. Froba, Bendtigte Traktormotornennleistung bei landwirtschaftlichen Arbeiten,
KTBL, 1995.

K. Ma, H. Zhou, Z. Liang, X. Li, Automated vehicle microscopic energy con-
sumption study (AV-micro): Data collection and model development, Energy 320
(2025) 135096.

Hang Zhou is a Ph.D. candidate in the Department of Civil
and Environmental Engineering at the University of Wiscon-
sin, Madison, Madison, W1, USA. He obtained his bachelor’s
degree in Logistics Management from the Huazhong Uni-
versity of Science and Technology, Wuhan, China in 2023.
His main research interests are the evaluation and control
of automated vehicles.

Peng Zhang is a Ph.D. candidate in the Department of
Civil and Environmental Engineering at the University
of Wisconsin-Madison, Madison, WI, USA. He earned his
bachelor’s degree in Electrical Engineering from Fuzhou
University, Fuzhou, China, in July 2017, and later pursued
a master’s degree in Industrial Engineering at the University
of South Florida, Tampa, FL, USA, completing it in August
2019. His primary research interests include vehicle car-
following stability control, Al-based vehicle control systems,
autonomous vehicle testing, and robot development.

Zhaohui Liang is a Ph.D. candidate in the Department of
Civil and Environmental Engineering at the University of
Wisconsin, Madison, Madison, WI, USA. He obtained his
bachelor’s degree from the Harbin Institute of Technology,
Weihai, China in June 2019. His main research interests are
Eco-driving algorithms and connected autonomous vehicle
testing.

Hangyu Li received his B.Eng. degree in vehicle engineering
from Tsinghua University, Beijing, China in 2021, and an
M.Phil. degree in intelligent transportation from the Hong
Kong University of Science and Technology, Hong Kong
SAR, China in 2023. He is currently working with Prof.
Xiaopeng Li toward a Ph.D. degree at the University of
Wisconsin-Madison, Madison, United States. His research
interests focus on automation and cooperation in intelligent
transportation systems.

Xiaopeng Li received the B.S. degree in civil engineering
with a computer engineering minor from Tsinghua Uni-
versity, Beijing, China, in 2006, and the M.S. degrees in
civil engineering and applied mathematics and the Ph.D.
degree in civil engineering from the University of Illinois
at Urban-Champaign, Champaign, IL, USA, in 2007, 2010,
and 2011, respectively. He is currently a Professor with
the Department of Civil and Environmental Engineering,
University of Wisconsin-Madison, Madison, WI, USA. His
main research interests include automated vehicle control
and connected and interdependent infrastructure systems.

http://refhub.elsevier.com/S0921-8890(25)00206-4/sb3
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb3
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb3
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb3
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb3
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb4
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb4
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb4
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb4
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb4
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb5
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb5
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb5
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb6
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb6
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb6
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb7
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb7
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb7
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb7
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb7
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb8
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb8
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb8
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb8
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb8
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb9
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb9
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb9
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb10
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb10
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb10
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb10
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb10
http://dx.doi.org/10.1016/j.trc.2025.105242
http://dx.doi.org/10.1016/j.trc.2025.105242
http://dx.doi.org/10.1016/j.trc.2025.105242
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb12
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb12
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb12
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb12
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb12
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb13
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb13
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb13
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb13
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb13
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb14
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb15
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb15
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb15
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb15
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb15
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb16
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb16
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb16
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb17
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb17
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb17
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb18
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb19
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb19
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb19
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb20
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb20
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb20
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb21
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb21
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb21
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb21
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb21
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb22
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb23
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb23
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb23
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb23
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb23
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb24
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb24
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb24
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb25
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb25
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb25
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb26
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb26
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb26
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb27
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb28
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb28
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb28
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb29
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb29
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb29
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb30
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb30
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb30
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb31
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb31
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb31
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb32
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb32
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb32
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb32
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb32
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb33
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb34
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb34
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb34
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb34
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb34
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb35
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb35
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb35
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb35
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb35
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb36
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb36
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb36
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb36
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb36
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb37
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb37
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb37
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb38
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb38
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb38
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb39
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb39
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb39
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb39
http://refhub.elsevier.com/S0921-8890(25)00206-4/sb39

	Coverage Trajectory Planning Problem on 3D Terrains with safety constraints for automated lawn mower: Exact and heuristic approaches
	Introduction
	Related Works
	Problem Definition
	Exact Algorithm
	Graph Construction
	A MILP model

	Heuristic Algorithm
	Map Decomposition
	Trajectory Generation
	Generate Paths within Cells
	Generate Paths to Connect Cells
	Dynamic Programming for Speed Control
	Integrate the Three Steps

	Trajectory Connection

	Experimental Results
	Experimental Settings
	Performance Comparison between the MILP and the Heuristic Algorithm on Small-size Instances
	Performance of the Heuristic Algorithm on Large-size Instances
	Impact of the Turning Angles
	Comparison between Different CTPP strategies
	Sensitivity Analyses

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

