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 A B S T R A C T

Recent technological advancements in automation have attracted increased interest in automated lawn mowers. 
Developing a safe and efficient trajectory to cover entire terrains is crucial for autonomous mowing. Unlike the 
simplified indoor environments with flat surfaces commonly assumed in existing literature, lawn maintenance 
typically occurs in complex outdoor settings characterized by irregular terrains, including obstacles and slopes. 
These irregularities pose significant safety risks, such as the potential for the mower to tip over. This paper 
introduces the Coverage Trajectory Planning Problem on 3D Terrains (CTPP-3DT), which involves determining 
both the path and speed profile for an automated lawn mower to effectively cover a general 3D terrain 
with varying slopes. The objective of the CTPP-3DT is to minimize the completion time, including the time 
for turning, which satisfies safety constraints on the robot’s speed and acceleration on various slopes. To 
address this challenge, we first propose a Mixed-Integer Linear Programming (MILP) model based on a graph 
expansion method, suitable for solving small-scale instances. For larger instances, we develop a decomposition-
based heuristic algorithm using Simulated Annealing. Extensive experiments conducted on benchmark instances 
demonstrate the effectiveness of our proposed MILP model and heuristic algorithm for small-size and large-
size instances. The comparison between the optimized strategy and the conservative strategy highlights the 
necessity of incorporating safety constraints in trajectory planning, resulting in an average reduction of more 
than 40% in completion time. Furthermore, sensitivity analyses reveal that technological advancements in 
mowers, such as increasing the maximum speed and acceleration and reducing turning speed, can significantly 
reduce the overall completion time. Our code and data are available at https://github.com/CATS-Lab/Mower-
CTPP-3D.
1. Introduction

The rapid development of automation has presented numerous 
industries with opportunities to enhance efficiency, with automated 
mowing emerging as a prominent application. Traditional manual lawn 
maintenance has several drawbacks. Firstly, maintaining large-size 
lawns is labor-intensive and time-consuming, which brings substantial 
human costs. Secondly, human operation errors often result in irreg-
ular lawn maintenance and inefficient mowing. Lastly, lawn mowers 
pose certain safety risks associated with adverse weather conditions, 
tipping over on steep slopes, and hazards caused by the mower blades. 
Automated lawn mowers offer solutions to these issues. By leveraging 
trajectory planning and control algorithms from autonomous driving 
technology, automated mowers can precisely execute optimal mow-
ing paths without human involvement, significantly reducing labor 
costs, improving mowing efficiency, and eliminating safety hazards. 
Recent advancements in autonomous driving perception technology, 
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particularly in low-cost sensors such as RGB-D cameras, have further 
driven the applications and large-size production of automated lawn 
mowers [1,2]. This highlights the need for developing algorithms for 
the operational scenarios of automated lawn mowers. 

In automated mowing, the path to cover the entire terrain is crucial 
for the efficiency of the mowing task [3,4]. In the literature, the 
problem of determining such a coverage path is referred to as the 
Coverage Path Planning (CPP) problem, which is known to be NP-hard, 
implying that no polynomial-time algorithm is currently known for 
solving it in general cases [5]. Existing CPP algorithms are effective in 
indoor environments on flat surfaces [6]. However, lawn mowing often 
involves outdoor environments with irregular terrain, including obsta-
cles, slopes, and dips, which bring significant safety risks. Research 
shows that only 47% of cropland in the United States has less than 
2% slopes; 48% of the cropland is on slopes between 2% and 10% [7]. 
Therefore, considering three-dimensional (3D) terrain in CPP is crucial 
for enhancing mowing operations.
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Although some literature has considered 3D terrain in CPP [7,8], 
significant research gaps remain. One critical issue is that these studies 
focus only on path planning, without considering the robot’s speed 
during movement. As a result, they overlook safety constraints caused 
by varying slopes. However, when safety constraints are taken into 
account—especially on irregular 3D terrains—it becomes essential to 
jointly optimize both the path and the speed profile in a unified 
problem. This process is referred to as trajectory planning. Traditional 
CPP methods [7,8] typically assume constant speed or ignore dy-
namic feasibility. On the other hand, existing speed planning methods 
such as MPC-based approaches [9–11] are often based on a given 
path. These methods are insufficient to directly address the integrated 
problem posed by coverage planning over complex, uneven terrains. 
Therefore, new algorithm designs are required to incorporate terrain-
induced safety constraints while optimizing coverage trajectories in 
such environments.

To address the above-mentioned problems, this paper proposes 
the Coverage Trajectory Planning Problem on 3D Terrains (CTPP-
3DT) for automated lawn mowers and other agricultural machines, 
aiming to solve the safety challenges caused by uneven terrain. In 
this problem, we introduce height onto traditional two-dimensional 
(2D) maps to calculate the robot’s slope along its trajectory. Safety 
constraints are defined as the maximum allowable slopes for robot 
movement and the speed and acceleration limits under varying slopes. 
To tackle this problem, the paper presents a solution framework em-
ploying two methods. The exact algorithm determines optimal solutions 
for small-size scenarios using a mixed integer linear programming 
(MILP) model. This model incorporates the turning cost with a graph 
expansion method. The heuristic algorithm divides the area into cells 
via a tailored decomposition algorithm. Then, it generates the candi-
date coverage trajectories in each cell and the shortest trajectories to 
connect them. Finally, the optimal trajectories are selected from the 
candidate trajectories set to form a complete trajectory. Our problem 
and solutions are not only suitable for lawn mowers but can also be 
applied to other robots, such as agricultural machines. In general, the 
main contributions can be summarized as follows:

• We introduce a CTPP-3DT for automated lawn mowers and other 
agricultural machines. This problem aims to determine the robot’s 
coverage trajectory in the 3D terrain that minimizes the comple-
tion time while satisfying the safety constraints.

• We design an exact MILP model for the CTPP-3DT. A graph 
expansion method is applied before solving the MILP model to 
represent turning using dummy arcs.

• We design a novel decomposition-based heuristic algorithm to 
solve the CTPP-3DT. Several components in this algorithm, such 
as the decomposition algorithm, shortest path algorithm, dynamic 
programming, and local search, are tailed for the 3D problem.

The remainder of this paper is organized as follows. Section 2 
reviews the related literature to CPP. Section 3 defines the 3D-CTTP. 
Section 4 describes the exact method of the 3D-CTTP. Section 5 presents 
the details of our proposed heuristic algorithm. Simulation results and 
discussions are shown in Section 6. Section 7 concludes this paper and 
provides future work.

2. Related works

There are various classifications of CPP algorithms in the litera-
ture [12–14]. Depending on whether the boundary of the area to be 
traversed is mapped out in advance, CPP algorithms can be categorized 
as offline or online. The latter approach, also known as sensor-based 
coverage, relies on real-time sensor data from the robot to gather 
information about the environment [5]. Furthermore, based on the 
dimension of the space to be covered, CPP approaches may be classified 
as 2D, when the robot’s motion is constrained to a plane, or 3D, with 
2 
3D coverage algorithms finding relevance in operations with unmanned 
aerial vehicles (UAVs) [15–17] or autonomous underwater vehicles 
(AUVs) [18].

From the perspective of solution methods, existing approaches for 
2D and offline CPP can be broadly classified into two categories: exact 
and heuristic methods. Exact methods aim to find optimal solutions 
but often require significant computational time. Representative exact 
approaches include MILP [19], spanning tree coverage [20,21], and 
dynamic programming [22]. These methods are typically suitable for 
indoor scenarios where the area to be covered is relatively small. 
In contrast, heuristic methods aim to find feasible, though not nec-
essarily optimal, solutions in a more computationally efficient way. 
One common strategy among heuristic approaches in CPP is to de-
compose the entire map into subregions, plan local paths within each 
subregion, and then connect them to form a complete coverage path. 
Notable decomposition-based algorithms include trapezoid decomposi-
tion [23], boustrophedon decomposition [24,25], Morse-based cellular 
decomposition [26], and exact cell decomposition [27].

In real-world applications, CPP must consider many practical con-
straints, such as 3D terrain, turning time, and speed control. Some 
literature addresses these constraints separately. For instance, [7] de-
veloped a 3D coverage planning approach with energy consumption 
models that account for terrain inclinations to minimize energy require-
ments using a genetic algorithm. [8] tackled energy-efficient coverage 
path planning on general 3D surfaces by generating geodesic Fer-
mat spiral paths. [28] proposed two greedy algorithms for CPP in 
agricultural fields, where the cost function minimizes the relative ef-
ficiency, defined as the operated area divided by total time (including 
turns). [29] incorporated speed control into their CPP. However, their 
speed profile optimization is applied after obtaining the path plan, 
separating path optimization from speed optimization.

Overall, while the above literature addresses some problem set-
tings or constraints in the CTPP-3DT, none of them comprehensively 
considers all the settings in an entire problem. Most literature on 3D 
terrain focuses on optimizing energy consumption for different slopes 
without considering the impact of slopes on robot speed, which may 
cause safety risks. Additionally, existing literature primarily focuses 
on path planning and lacks joint control of speed and path, which 
is essential for trajectory planning. To bridge this research gap, this 
paper proposes the CTPP-3DT that considers safety constraints under 
3D terrain and simultaneously optimizes the trajectory’s path and speed 
profile to minimize completion time, including the turning time. To 
systematically solve and investigate this problem, the MILP model and 
a heuristic algorithm are proposed to solve this problem, followed by 
experiments for the algorithms and the sensitivity analyses.

3. Problem definition

The CTPP-3DT considers a 3D space R3, where the 𝑋 and 𝑌  axes 
represent the horizontal plane and the 𝑍 axis denotes the elevation. 
Within this space, the coverage region is defined as a closed surface 
ini embedded in R3 (ini ⊂ R3). Denote the position of each point 
𝑝 ∈ ini as (𝑝x, 𝑝y , 𝑝z), this means that the vertical position (𝑝z) can be 
represented as a function 𝑓 of horizontal coordinates, i.e., 𝑝z = 𝑓 (𝑝x, 𝑝y). 
Since lawn mowing is usually performed periodically in fixed locations, 
we assume that ini is a static and known environment. The area ini
contains some service areas that need to be covered, denoted as , and 
restricted areas that cannot be traversed, denoted as . These areas are 
closed and do not touch each other, which means that  ∩  = ∅. By 
ignoring the elevation of the area ini, we discretize it into a 2D grid 
consisting of square cells with side length 𝑤. The value of 𝑤 can be 
set to the width of the robot, which ensures that each cell can be fully 
covered when the robot passes through it from any of the four cardinal 
directions. A robot starts from a start point 𝑝start ∈  at time 0 to cover 
the entire area and eventually returns to the end point 𝑝end ∈ . We 
define a path as a sequence of points. A trajectory is defined as a path 
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Fig. 1. Transition from the input map ini to the directed graph dir.

along with the speed and acceleration on the path. The speed of the 
robot moving from 𝑝𝑖 to 𝑝𝑗 is denoted as 𝑣𝑖𝑗 , and the acceleration is 
denoted as 𝑎𝑖𝑗 . The slope from point 𝑝𝑖 to 𝑝𝑗 is denoted as 𝜃𝑖𝑗 = 𝑧𝑗−𝑧𝑖

𝑤 . 
The safety ranges of speed and acceleration are determined by the 
slope 𝜃𝑖𝑗 , denoted as [0, 𝑣+𝑖𝑗 ] and [𝑎−𝑖𝑗 , 𝑎+𝑖𝑗 ].  Similar to Charitidou and 
Keviczky [19], this study assumes that the robot’s speed and turning 
angle are discretized into finite sets  = {0, 𝛥𝑢, 2𝛥𝑢,… , 𝑁𝛥𝑢} and 
 = {0, 𝜋∕2, 𝜋, 3𝜋∕2}, respectively. Here,   denotes the set of feasible 
speed values,  represents the set of discrete heading angles, and 
𝛥𝑢 is the speed increment. The value of 𝑁 is chosen such that the 
maximum feasible speed satisfies 𝑁𝛥𝑢 ≤ max𝑝𝑖 ,𝑝𝑗∈ 𝑣+𝑖𝑗 < (𝑁 +1)𝛥𝑢.  We 
assume the robot is a zero-turn robot, which must decelerate to 0 speed 
before turning. We assume the time for the turn is a constant 𝑡turn. The 
objective of the CTPP-3DT is to determine a trajectory that minimizes 
the completion time while satisfying the above safety constraints.

4. Exact algorithm

This section presents an exact algorithm for solving the CTPP-3DT. 
The method formulates the problem as a MILP model, which can be 
optimally solved using state-of-the-art solvers. Before describing the 
model, we construct a directed graph using a graph expansion method 
in Section 4.1 to model the robot’s turns. In Section 4.2, we describe 
the decision variables, objective function, and constraints of the model.

4.1. Graph construction

The first step of the exact algorithm is to build the directed graph 
based on the input map. We construct a directed graph dir =

(

dir, dir
)

for the grid map ini, where dir represents the set of nodes and dir
represents the set of arcs. Each point 𝑝 ∈  is transferred to a node 
𝑖 ∈ dir. Nodes 𝑖 and 𝑗 ∈ dir are connected with arc (𝑖, 𝑗) ∈ dir if their 
corresponding points 𝑝𝑖 and 𝑝𝑗 are adjacent. In particular, we denote 
node 𝑖start and 𝑖end as the nodes corresponding to the start and end 
point 𝑝start and 𝑝end ∈ ini, respectively. Fig.  1 shows an example of 
the directed graph.

To incorporate the turning time, a graph expansion method is ap-
plied to dir. The main idea of this method is to create dummy arcs with 
penalty costs for turns. As shown in Fig.  2, for node 𝑖 ∈ dir, a dummy 
node set 𝑖 = {𝑖1, 𝑖2, 𝑖3, 𝑖4} is generated. These nodes receive arcs en-
tering from different directions. For example, the dummy node 𝑗1 only 
receives arcs entering from dummy nodes in 𝑖, while dummy node 
𝑘3 only receives arcs entering from dummy nodes in 𝑗 . Thus, we can 
classify arcs into turning and non-turning arcs, which are represented 
as dashed lines and solid lines respectively in Fig.  2. Any trajectory 
containing turns must have turning arcs. For instance, the trajectory 
(𝑖4, 𝑗1), (𝑗1, 𝑘3) includes the dashed arc (𝑗1, 𝑘3), indicating a turn at node 
𝑗. Denote the expanded directed graph as exp =

(

exp, exp
)

, where 
exp = ∪𝑖∈dir𝑖 and exp = {(𝑖′, 𝑗′)|𝑖′ ∈ 𝑖, 𝑗′ ∈ 𝑗 , (𝑖, 𝑗) ∈ dir}. In 
particular, we denote sets start and end as the dummy node sets for 
𝑖  and 𝑖 , respectively. We also define the set of turning arcs as 
start end

3 
Fig. 2. Illustration of the graph expansion from dir to exp. The solid lines represent 
the non-turning arcs, and the dashed lines represent the turning arcs.

turn. A complete trajectory must include at least one dummy node from 
each dummy node set in exp.

Then we introduce two sets of parameters for the speed and accel-
eration decisions. Denote the time the robot takes to move from node 
𝑖 ∈ exp at speed 𝑛 ∈   to reach speed 𝑚 ∈   at node 𝑗 ∈ exp
as 𝑡𝑖𝑗𝑛𝑚 = 2𝑤∕(𝑛 + 𝑚). The turning time 𝑡turn is added to 𝑡𝑖𝑗𝑛𝑚 if arc 
(𝑖, 𝑗) is a turning arc. We also introduce a set of binary parameters 
𝑣𝑖𝑗𝑛𝑚 to indicate whether this movement violates safety constraints. If 
𝑚 ∈ [𝑣−𝑖𝑗 , 𝑣

+
𝑖𝑗 ] or (𝑚2 − 𝑛2)∕(2𝑤) ∈ [𝑎−𝑖𝑗 , 𝑎

+
𝑖𝑗 ], 𝑣𝑖𝑗𝑛𝑚 = 1, otherwise 𝑣𝑖𝑗𝑛𝑚 = 0.

If the robot makes two consecutive turns at nodes 𝑖 and 𝑗, the speed 
at both nodes is set to 0. To avoid infinite travel time, for this special 
case, we assume the robot accelerates with the maximum acceleration 
and then decelerates with the maximum deceleration along arc (𝑖, 𝑗). 
The travel time for such an arc (𝑖, 𝑗) ∈ exp is computed as: 

𝑡𝑖𝑗00 =

(

1
𝑎+𝑖𝑗

− 1
𝑎−𝑖𝑗

)

√

√

√

√

2𝑤𝑎+𝑖𝑗𝑎
−
𝑖𝑗

𝑎+𝑖𝑗 − 𝑎−𝑖𝑗
(1)

Note that this calculation does not include the turning time at nodes 𝑖
or 𝑗.

4.2. A MILP model

The second step is to build the MILP model. The model contains the 
following variables:

• 𝑥𝑖𝑗 ∈ {0, 1}: binary decision variable. 𝑥𝑖𝑗 = 1 if the robot traverses 
arc (𝑖, 𝑗) ∈ exp; 0 otherwise.

• 𝑦𝑖𝑛 ∈ {0, 1}: binary decision variable. 𝑦𝑖𝑛 = 1 if the robot passes 
through node 𝑖 ∈ exp with speed level 𝑛 ∈  ; 0 otherwise.

• 𝜏𝑖𝑗 ∈ R≥0: continuous decision variable. Represents the travel time 
on arc (𝑖, 𝑗) ∈ exp if it is traversed by the robot; otherwise, it is 
set to zero.

• 𝑢𝑖 ∈ Z≥0: integer decision variable. Represents the sequence 
number of node 𝑖 ∈ exp in the tour. This variable is used to 
eliminate sub-tours in the routing constraints.

The model is constructed below:
min

∑

(𝑖,𝑗)∈exp

𝜏𝑖𝑗 (2)

 s.t. 
∑

(𝑖,𝑗)∈exp

𝑥𝑖𝑗 =
∑

(𝑗,𝑖)∈exp

𝑥𝑗𝑖, ∀𝑖 ∈ exp∕(start ∪end), (3)

∑

𝑖′∈𝑖

∑

𝑗∈exp

𝑥𝑖′𝑗 ≥ 1, ∀𝑖 ∈ dir∕{𝑖start, 𝑖end}, (4)

∑

𝑖∈start

∑

𝑗∈exp

𝑥𝑖𝑗 =
∑

𝑖∈end

∑

𝑗∈exp

𝑥𝑗𝑖 = 1, (5)

𝑢𝑖 − 𝑢𝑗 + 1 ≤ 𝑀
(

1 − 𝑥𝑖𝑗
)

, ∀(𝑖, 𝑗) ∈ exp, (6)
∑

𝑛∈
𝑦𝑖𝑛 ≤ 1, ∀𝑖 ∈ exp, (7)

∑

𝑦𝑖0 =
∑

𝑦𝑖0 = 1, (8)

𝑖∈start 𝑖∈end
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∑

𝑛∈
𝑦𝑖𝑛 ≥ 1 −𝑀

⎛

⎜

⎜

⎝

1 −
∑

(𝑖,𝑗)∈exp

𝑥𝑖𝑗
⎞

⎟

⎟

⎠

, ∀𝑖 ∈ exp, (9)

∑

𝑛∈
𝑦𝑖𝑛 ≥ 1 −𝑀

⎛

⎜

⎜

⎝

1 −
∑

(𝑗,𝑖)∈exp

𝑥𝑗𝑖
⎞

⎟

⎟

⎠

, ∀𝑖 ∈ end, (10)

𝑦𝑖0 ≥ 1 −𝑀

(

1 −
∑

(𝑖,𝑗)∈turn

𝑥𝑖𝑗

)

, ∀𝑖 ∈ exp, (11)

𝑦𝑗𝑚 ≤ 𝑣𝑖𝑗𝑛𝑚 +𝑀
(

2 − 𝑥𝑖𝑗 − 𝑦𝑖𝑛
)

, ∀(𝑖, 𝑗) ∈ exp, 𝑛 ∈  , 𝑚 ∈  , (12)
𝜏𝑖𝑗 ≥ 𝑡𝑖𝑗𝑛𝑚 −𝑀

(

3 − 𝑥𝑖𝑗 − 𝑦𝑖𝑛 − 𝑦𝑗𝑚
)

, ∀(𝑖, 𝑗) ∈ exp, 𝑛 ∈  , 𝑚 ∈  ,

(13)

𝑥𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ exp, (14)

𝑦𝑖𝑛 ∈ {0, 1}, ∀𝑖 ∈ exp, 𝑛 ∈  , (15)

𝜏𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ exp, (16)

𝑢𝑖 ≥ 0, ∀𝑖 ∈ exp (17)

The objective function (2) minimizes the total completion time. 
Constraints (3)–(5) are the arc-flow constraints. In these constraints, 
each dummy node can be visited at most once, but each original 
node in dir may be visited multiple times through different dummy 
nodes. This allows for potential backtracking and ensures that a feasible 
solution always exists. Constraints (6) eliminate sub-tours, where 𝑀 is 
a large constant. Constraints (7)–(11) are the speed control constraints. 
Specifically, constraints (7) ensure that each node has only one speed 
when traversed by the robot. Constraints (8) specify that the speed 
at the start and end nodes is zero. Constraints (9)–(10) ensure that 
a dummy node 𝑖 must have a speed assigned if it is traversed by the 
robot, where constraint (10) is specially designed for the case where 
it is the last node in the route. Constraints (11) enforce the speed 
to be zero when the robot needs to turn. Constraints (12) are the 
safety constraints for speed. Constraints (13) calculate the travel time 
for arc (𝑖, 𝑗). Note that the parameters 𝑡𝑖𝑗𝑛𝑚 and 𝑣𝑖𝑗𝑛𝑚 used in these 
constraints are computed in advance based on the methods described 
in Section 4.1. Constraints (14)–(17) define the domain of the decision 
variables.

5. Heuristic algorithm

While the MILP model can solve the problem to optimal, it re-
quires long computational time for large-size instances in real-world 
applications. This section introduces an efficient heuristic algorithm for 
the CTPP-3DT, which aims to solve the same optimization problem as 
formulated in Section 4. Instead of transferring each point as a node 
in the directed graph, the heuristic algorithm decomposes the map 
into cells and transfers each cell as a node, which can significantly 
reduce the scale of the directed map. The algorithm has three steps: 
map decomposition, trajectory generation, and trajectory connection. 
The following sections describe the details of these three steps.

5.1. Map decomposition

The first step of the algorithm is map decomposition. This step 
aims to decompose the map into a small number of cells to reduce the 
computational complexity of the next two steps. The decomposition can 
be solved by algorithms proposed in the literature, such as the Bous-
trophedon Cellular Decomposition (BCD) [24,25]. However, the BCD 
does not consider the safety constraints in the 3D terrain. Therefore, 
we adapt the BCD to a Rotated BCD (RBCD) algorithm. We first briefly 
review the BCD and then introduce details of the RBCD.

The BCD approach uses a slice to sweep the area in a certain 
direction. As shown in Fig.  3, if it encounters an obstacle with a convex 
boundary, the existing cell will be divided into several new cells. If 
it leaves an obstacle, multiple old cells will merge into a new cell. 
4 
The cells generated by the algorithm can all be completely covered 
using a Boustrophedon path (i.e., a zig-zag path) in the direction 
perpendicular to the sweep direction. However, BCD cannot handle 
obstacles represented by non-convex polygons, as it relies on the as-
sumption that obstacles are convex. Since the RBCD algorithm builds 
upon BCD, it also inherits this limitation. A common solution in the 
literature is to approximate non-convex obstacles using their minimum 
bounding convex hulls, which can be computed using standard convex 
hull algorithms such as the Quickhull algorithm [30].

In the CTPP-3DT, due to the influence of slopes, the completion 
time for a robot to cover an entire area along different path directions 
can vary significantly. In some directions, the zig-zag paths may be 
infeasible if there is a steep slope along the paths. Therefore, we 
modified the BCD to RBCD, which attempts to cover the map using zig-
zag paths in the optimal directions. For each direction 𝛼 ∈ , we rotate 
the map by direction 𝛼. Then, replace the steep path in the direction 
that is perpendicular to 𝛼 with dummy obstacles and apply the BCD 
to the map. Dummy obstacles are marked as special cells and handled 
separately in the following steps. Finally, evaluate the BCD results in 
each direction and select the optimal one 𝛼∗ to apply the BCD.

There are two key aspects to applying the RBCD. 1. Implementing 
the BCD in different directions: Since rotating the map ini yields the 
same result as rotating the direction of the zig-zag path, we fix the 
sweeping direction of the slice in the BCD to the horizontal right and 
then rotate the map. We first construct a pixel matrix based on the 
input grid map. Then, we rotate the image of the pixel matrix to obtain 
the rotated pixel matrix, which serves as the rotated map. 2. Selecting 
the optimal direction 𝛼∗: We evaluate the BCD results by minimizing 
the number of segmented cells and the number of turns in the zig-
zag path. Fewer cells indicate a better decomposition. If the number of 
cells is the same, fewer turns in the zig-zag path are preferable. Fig.  4 
provides an example of the RBCD process with sweep directions 𝛼 = 0
and 𝛼 = 1

2𝜋. The top part of the figure illustrates the 3D terrain of 
the target area, which includes two rectangular obstacles. In addition, 
a steep slope is present at the location marked by the dashed line, 
making it impossible for the robot to proceed in the direction indicated 
by the arrow. As a result, when BCD is applied in the direction shown 
in Fig.  4(a) (i.e., 𝛼 = 0), a dummy obstacle is generated to account 
for the impassable terrain. The bottom part of the figure presents the 
resulting cell decomposition in the top view, where brown rectangles 
represent dummy obstacles and black rectangles represent physical 
obstacles. Since the decomposition with 𝛼 = 1

2𝜋 produces fewer cells, 
it outperforms the case with 𝛼 = 0. The pseudocode in Algorithm 1 
illustrates the algorithm’s process.

Algorithm 1 Map decomposition algorithm.
1: Input: map ini
2: Initialize 𝛼∗ ← 0, #𝐶𝑒𝑙𝑙∗ ← 𝑀 , #𝑡𝑢𝑟𝑛∗ ← 𝑀
3: for 𝛼 ∈  do
4:  𝛼 ← rotate ini for 𝛼 degree
5:  ′𝛼 ← add dummy obstacles for slopes larger than the safety 
slope

6:  #𝐶𝑒𝑙𝑙, #𝑡𝑢𝑟𝑛 ← BCD(′𝛼)
7:  if (#𝐶𝑒𝑙𝑙 < #𝐶𝑒𝑙𝑙∗) or (#𝐶𝑒𝑙𝑙 == #𝐶𝑒𝑙𝑙∗ and #𝑡𝑢𝑟𝑛 < #𝑡𝑢𝑟𝑛∗) then
8:  𝛼∗ ← 𝛼, #𝐶𝑒𝑙𝑙∗ ← #𝐶𝑒𝑙𝑙, #𝑡𝑢𝑟𝑛∗ ← #𝑡𝑢𝑟𝑛
9:  end if
10: end for
11:  ← BCD(′𝛼∗ )
12: Output: a set of cells 

5.2. Trajectory generation

The second step trajectory generation creates trajectories that cover 
cells in  and connect them. The generation is divided into three steps: 
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Fig. 3. Illustrations of the key process of the BCD algorithm when meeting and leaving an obstacle.
Fig. 4. Examples of the RBCD algorithm in two sweep directions.
(1) generating the path within cells, (2) generating the path to connect 
the cells, and (3) dynamic programming for speed control.

5.2.1. Generate paths within cells
According to Section 5.1, the cells decomposed by the BCD can be 

covered using zig-zag paths. Different from traditional CPP, due to the 
consideration of slope effects on speed, in CTPP-3DT, the completion 
time of zig-zag paths starting from different points within the same 
cell may vary. Therefore, we generate four zig-zag paths starting from 
the four vertices of the cell: the top-left, bottom-left, top-right, and 
bottom-right corners, as the candidate paths. Fig.  5 shows an example 
of zig-zag paths generated in one cell, where the yellow grid represents 
the start point and the green grid represents the end point. Specifically, 
for the cells generated by dummy obstacles that cannot be covered 
using the zig-zag path, we divide these cells into rows and generate 
only horizontal paths, as shown in Fig.  6. All the paths obtained in the 
step are denoted as in.

5.2.2. Generate paths to connect cells
Denote the start point and end point for path 𝑧 ∈ in as 𝑝start(𝑧)

and 𝑝 (𝑧). To form a complete path, we need to find the shortest path 
end

5 
connecting 𝑝end(𝑧1) and 𝑝start(𝑧2), where 𝑧1 ≠ 𝑧2. We use a modified A* 
algorithm to search for the path between these two points.

The A* algorithm is a widely-used heuristic algorithm for the short-
est path problem [31,32]. The traditional A* uses a priority queue to 
explore points with the minimum estimated cost. In our problem, the 
objective is to minimize the completion time including the turning time. 
To record turns, we need to check if at least three consecutive points in 
the path are in a straight line. Therefore, we extend the A* algorithm’s 
priority queue to include three nodes to record turns. Since we have 
not yet obtained the complete path and cannot calculate the optimal 
speed, we use the robot’s lowest speed to calculate travel time when 
computing the shortest path.

In numerical experiments, we found that the robot’s optimal path 
usually does not pass through two distant cells consecutively. There-
fore, it is unnecessary to connect the start and end points of all paths 
𝑧 when calculating the shortest path. To this end, we set a maximum 
span 𝜂̄ for the cells when computing the shortest path. First, we build 
an undirected graph for the decomposed cells, where all arcs have 
a cost of 1. Then, we use the Floyd algorithm [33] to calculate the 
shortest distance between cells. If the distance between two cells 𝑐1
and 𝑐  exceeds 𝜂̄, we do not compute the shortest path between them. 
2



H. Zhou et al. Robotics and Autonomous Systems 193 (2025) 105109 
Fig. 5. Example of the four candidate zig-zag paths generated in one cell.
Fig. 6. Illustration of the candidate paths for dummy obstacle cells.
The parameter 𝜂̄ is given as a hyperparameter before the algorithm 
runs. Notice that its value may need to be tuned to ensure feasibility, 
depending on the problem instance. All the shortest paths obtained in 
this step are stored in set out.

5.2.3. Dynamic programming for speed control
For all paths in in and out, we use a dynamic programming 

algorithm to determine the optimal speed. Since the robot must slow 
down to zero speed at each turn, we divide each path 𝑧 into sev-
eral straight-line segments (𝑧) at the turning points, referred to as 
segments. A segment 𝑙 ∈ (𝑧) can be represented as a sequence of 
points {𝑝0𝑙 , 𝑝1𝑙 ,… , 𝑝𝑄𝑙 }, where 𝑄 represents the total number of points 
in segment 𝑙.

Intuitively, the optimal speed strategy within a segment is to accel-
erate to the maximum speed, maintain that speed, and then decelerate 
at the end. However, the slope at each point within the segment may 
vary, resulting in different speed and acceleration limits. Therefore, 
we design a dynamic programming method to obtain the optimal 
acceleration at each point within the segment. The key elements of 
dynamic programming are defined below:

• State: 𝑆(𝑞, 𝑣). The time consumption from point 0 to point 𝑝𝑞𝑙
when the robot’s speed is 𝑣 in point 𝑝𝑞𝑙 .

• Initial state: 𝑆(0, 0) = 0. Represent that the robot starts at the 
initial position with 0 speed.

• State space transition function:
𝑆(𝑞 + 1, 𝑣) = min

𝑢,𝑎

[

𝑆(𝑞, 𝑢) + 2𝑤
𝑢 + 𝑣

]

(18)

 s.t. 𝑣2 = 𝑢2 + 2𝑎𝑤 (19)

0 ≤ 𝑣 ≤ 𝑣+
𝑝𝑞𝑙 𝑝

𝑞+1
𝑙

(20)

𝑎−
𝑝𝑞𝑙 𝑝

𝑞+1
𝑙

≤ 𝑎 ≤ 𝑎+
𝑝𝑞𝑙 𝑝

𝑞+1
𝑙

(21)

where 𝑢 is the current speed, 𝑣 is the speed in the next step, 𝑎 is 
the current acceleration. Functions (18) aim to minimize the time 
consumption by determining the optimal acceleration and speed. 
Constraints (19) calculate speed 𝑣. Constraints (20) and (21) are 
the safety constraints.
6 
• Objective function: minimize the traveling time in segment 𝑙: 
min𝑆

(

𝑝𝑄𝑙 , 0
)

(22)

With the state and transition equations defined, dynamic program-
ming can solve the problem by constructing a table that represents the 
optimal solution at each state. By iteratively updating the table using 
the transition equations, we can determine the optimal solution for the 
speed control problem.

5.2.4. Integrate the three steps
The pseudocode in Algorithm 2 illustrates the algorithm’s process.

Algorithm 2 Trajectory generation.
1: Input: the set of cells 
2: Initialize set of paths in ← ∅, out ← ∅
3: for cell 𝑐 ∈  do
4:  if (cell 𝑐 is a dummy obstacle cell) then
5:  Divide each row in 𝑐 into individual cells and add them to 
6:  Generate two horizontal paths for 𝑐 and add them to in
7:  else
8:  Generate zig-zag paths for 𝑐 and add them to in
9:  end if
10: end for
11: 𝜂 ← Floyd algorithm ()
12: for cell 𝑐1 ∈ , 𝑐2 ∈ ∕𝑐1 do
13:  if (𝜂𝑐1𝑐2 ≥ 𝜂) then
14:  𝑧𝑐1𝑐2 ← modified A* algorithm (𝑐1, 𝑐2)
15:  out ← out ∪ {𝑧𝑐1𝑐2}
16:  end if
17: end for
18: Initialize the set of speed commands ̂ ← ∅
19: for 𝑧 ∈ in ∪out do
20:  (𝑧) ← Divide 𝑧 to a set of segments
21:  ̂ ← ̂ ∪ DP((𝑧))
22: end for
23: Output: sets of paths in, out, and speed commands ̂ .
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Fig. 7. Illustration of the swap operator and the replace operator.
5.3. Trajectory connection

The final step for the trajectory planning algorithm is to connect the 
candidate trajectories obtained from the trajectory generation. Based on 
these trajectories, we construct a directed graph path =

(

path, path
)

, 
where path = {𝑝start(𝑧), 𝑝end(𝑧) ∣ 𝑧 ∈ in ∪ out} and path = {(𝑖, 𝑗) ∣
𝑖, 𝑗 ∈ path, 𝑖 ≠ 𝑗}. The cost of the arcs is the time of the trajectories. 
Additionally, we set a dummy source and a dummy sink, connecting 
to the trajectories corresponding to point 𝑝start. The costs related to 
the dummy source and sink are zero. This step aims to find a route 
with a minimal total cost that starts from the dummy source, covers 
all cells, and finally returns to the dummy sink. We use a greedy 
algorithm [34,35] and a simulated annealing (SA) algorithm to solve 
this TSP variant.

The greedy algorithm starts from the dummy source. It selects the 
nearest node as the next visited node at each current node. When a 
cell is covered, it is marked, and subsequent trajectories are prohibited 
from being selected. The solution obtained by the greedy algorithm 
is used as the initial solution for the SA algorithm. The principle of 
SA is to iteratively apply operators to the current solution to obtain 
its neighborhood solutions. It accepts the neighborhood solution that 
decreases the cost and occasionally accepts solutions that increase it, 
to avoid being trapped in local optima.

In our algorithm, we design two operators that are widely used in 
the routing problem [36] to generate the neighborhood solutions. The 
first operator is the swap operator, which exchanges the points where 
two cells are covered. The second operator is the replace operator, 
which replaces the zig-zag path covering a cell. The two operators are 
illustrated in Fig.  7.

The probability of accepting a worse solution decreases over time, 
allowing the algorithm to focus more on refining the best solution 
found. For a minimization problem, the probability of accepting a 
worse solution is calculated as follows: 

𝑃 = 𝑒(𝑂𝑏𝑗current−𝑂𝑏𝑗new)∕𝑇current (23)

where 𝑂𝑏𝑗current is the objective value of the current solution, 𝑂𝑏𝑗new
is the objective value of the new solution, and 𝑇  is the current temper-
ature. The temperature is gradually decreased according to a cooling 
schedule. A common approach is to use a geometric cooling schedule, 
where the temperature is updated as follows: 

𝑇 = 𝛽𝑇 (24)
new current

7 
where 𝑇new is the updated temperature, 𝑇current is the current tempera-
ture, and 𝛽 is a constant factor between 0 and 1, typically close to 1. The 
algorithm terminates once 𝑇current drops below a predefined threshold 
𝑇min.

Finally, Algorithm 3 presents the pseudocode of the trajectory con-
nection algorithm. Here 𝑠𝑤𝑎𝑝(.) and 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(.) represent the swap and 
replace operators, and 𝑂𝑏𝑗(.) represents the objective value, i.e., the 
total travel time.

Algorithm 3 Trajectory connection algorithm.
1: Input: sets of paths in, out, and speed commands ̂ .
2: Initialize path ← {𝑝start(𝑧), 𝑝end(𝑧) ∣ 𝑧 ∈ in ∪ out}, path ← {(𝑖, 𝑗) ∣

𝑖, 𝑗 ∈ path, 𝑖 ≠ 𝑗}, and 𝑤𝑒𝑖𝑔ℎ𝑡() ← the travel time calculated from 
̂ .

3: Initialize a queue   with only the dummy sink. Denote the last node 
in   as  [0].

4: while   does not cover all cells do
5:  𝑐𝑜𝑠𝑡min ← ∞, 𝑖next ← 𝑁𝑜𝑛𝑒.
6:  for ( [0], 𝑗) ∈ path do
7:  if The cell of node 𝑗 is not visited in   and 𝑤𝑒𝑖𝑔ℎ𝑡( [0], 𝑗) ≤

𝑐𝑜𝑠𝑡min then
8:  𝑐𝑜𝑠𝑡min ← 𝑤𝑒𝑖𝑔ℎ𝑡( [0], 𝑗), 𝑖next ← 𝑗.
9:  end if
10:  end for
11:   ←  ∪ 𝑖next.
12: end while
13: Initialize 𝑇current and opt ←  .
14: while 𝑇current ≥ 𝑇min do
15:  new ← 𝑠𝑤𝑎𝑝( ) and 𝑟𝑒𝑝𝑙𝑎𝑐𝑒( ).
16:  if 𝑒(𝑂𝑏𝑗( )−𝑂𝑏𝑗(new))∕𝑇 ≥ 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) then
17:   ← new.
18:  end if
19:  if 𝑂𝑏𝑗( ) ≤ 𝑂𝑏𝑗(opt) then
20:  opt ←  .
21:  end if
22:  𝑇new ← 𝛽𝑇current.
23: end while
24: Output: path sequence opt.



H. Zhou et al. Robotics and Autonomous Systems 193 (2025) 105109 
Table 1
Mower parameters used in the experiment.
 Description Value Unit  
 Safe slope range [−30%, 30%] Grade 
 Maximum speed 3.5 m/s  
 Acceleration range (on [0%, 10%] slope) [−2.5, 1.25] m/s2  
 Acceleration range (on [10%, 30%] slope) [−1.4, 0.6] m/s2  
 Turning time 2 s  

6. Experimental results

This section presents the instance sets and analyzes the performance 
of the MILP model and the algorithm. Our algorithm was coded in Java 
programming language using ILOG CPLEX 12.6.3 as the solver. The 
experiments were conducted on a machine equipped with a 3.2 GHz 
AMD Ryzen 7 7735HS with Radeon Graphics CPU and 16 GB of 
memory under the Windows 11 operating system.

6.1. Experimental settings

To evaluate the effectiveness of our model and algorithm, we design 
an algorithm to randomly generate large-size instances for the CTPP-
3DT, which also serve as the benchmark instances for future study. The 
instance generation algorithm contains four steps:

1. Create a 2D binary matrix where each pixel is randomly set 
to 0 (service area) or 1 (restricted area) based on the obstacle 
probability 𝜎.

2. Apply the cellular automata algorithm to smooth the binary 
map, ensuring obstacle connectivity and realistic terrain.

3. Create a height matrix where each pixel is assigned a random 
value between 0 and ℎ if it is not an obstacle, where ℎ is the 
highest height of the map.

4. Apply the Gaussian blur algorithm to the height matrix to ensure 
realistic terrain transitions.

Particularly, we set the start point and the end point at the same 
position, as in practical applications, the mower is expected to return 
to its initial position for retrieval.

We generated two sets of instances, small-size and large-size, to test 
the MILP model and the heuristic algorithm. To test the performance 
of the MILP model in different sizes, the small-size set includes ten 
instances with sizes 4 × 4 m2, 6 × 6 m2, . . . , and 13 × 13 m2, with 
parameters 𝜎 = 0.3 and ℎ = 1.0 are manually generated. The large-size 
set includes three sizes, 50 × 50 m2 and 100 × 100 m2. For each size, 
four sets of instances are generated with different parameter settings: 
𝜎 = 0.32, 0.35 and ℎ = 1.0, 1.2. Three instances are generated by the 
algorithm for each parameter setting, resulting in 36 instances. The 
instances are named as ‘‘𝑙𝑒𝑛𝑔𝑡ℎ_𝑤𝑖𝑑𝑡ℎ_𝜎_ℎ_𝐼𝐷’’, representing the length, 
width, parameter 𝜎, parameter ℎ, and the instance ID. Fig.  8 shows one 
of the 100 × 100 instances. Besides, the research team collaborated 
with an anonymous company to obtain parameters for the mower. 
Detailed parameters of the mower can be found in Table  1. The speed 
increment is set to 𝛥𝑢 = 0.35 m∕s, resulting in a maximum number of 
speed levels 𝑁 = 10 in the set  .

In the following test, the time limit on each run of the MILP model 
was set to 3600 s for instances smaller than 10 × 10, and 7200 s for 
larger instances. For the heuristic algorithm, we run each instance five 
times and report the best objective value along with the variance. In 
the SA, we set the initial temperature as 100, the cooling rate 𝛽 = 0.99, 
and the maximum iteration for the algorithm as 100. 𝜂̄ = 20 and 40 for 
50 × 50 and 100 × 100 instances, respectively. Our code and data are 
available at https://github.com/CATS-Lab/Mower-CTPP-3D.
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Table 2
Comparison of MILP model and the heuristic algorithm on small-size instances.
 Instance MILP Heuristic Δ  
 𝑈𝐵 𝐿𝐵 #𝑁𝑜𝑑𝑒 𝑇 𝑖𝑚𝑒 𝐺𝑎𝑝 𝑂𝑏𝑗 𝑇 𝑖𝑚𝑒  
 4_4_0.3_1.0_0 15.67 15.67 50,066 6 0.00 31.53 0.16 50.31  
 5_5_0.3_1.0_0 31.42 31.42 1058,801 65 0.00 46.93 0.11 33.06  
 6_6_0.3_1.0_0 42.54 36.44 22,212,925 3600 14.35 52.55 0.00 19.05  
 7_7_0.3_1.0_0 54.09 40.06 14,150,324 3600 25.93 76.35 0.00 29.16  
 8_8_0.3_1.0_0 48.70 23.44 7234,851 3600 51.87 71.99 0.00 32.35  
 9_9_0.3_1.0_0 58.64 36.05 7823,501 3600 38.53 108.13 0.01 45.77  
 10_10_0.3_1.0_0 87.20 52.43 14,007,681 7200 39.87 133.05 0.01 34.46  
 11_11_0.3_1.0_0 76.82 40.68 13,283,736 7200 47.04 144.22 0.01 46.74  
 12_12_0.3_1.0_0 111.46 38.41 16,844,730 7200 65.54 159.81 0.11 30.25  
 13_13_0.3_1.0_0 206.52 9.64 6528,749 7200 95.33 164.09 0.11 −25.86 
 Average 58.50 32.42 10,319,536 4327 37.85 98.86 0.05 35.68  

Fig. 8. The map of instance 100_100_0.35_1.0_1 generated by the instance generation 
algorithm (unit: m).

6.2. Performance comparison between the MILP and the heuristic algorithm 
on small-size instances

Table  2 reports the results of the MILP model and heuristic algo-
rithm on small-size instances. The first column displays the instance 
names. Columns 𝑈𝐵 and 𝐿𝐵 represent the best upper and lower bounds 
for the MILP model. Column #𝑁𝑜𝑑𝑒 is the number of nodes explored 
in the B&B (branch and bound) tree in the MILP model. Column 𝐺𝑎𝑝
is the percentage difference between the best upper bounds and the 
lower bound. Column 𝑇 𝑖𝑚𝑒 reports the time in seconds consumed to 
solve one instance. Specifically, 𝐺𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵)∕𝑈𝐵 × 100. Column 
𝑂𝑏𝑗 represents the objective values of the heuristic algorithm, where 
the objective function is equivalent to the MILP model of columns 
𝑈𝐵 and 𝐿𝐵. Column 𝛥 is the percentage gap of the objective values 
between the MILP model and the heuristic algorithm, calculated as 
𝛥 = (𝑂𝑏𝑗 − 𝑈𝐵)∕𝑂𝑏𝑗 × 100.

Table  2 shows that the MILP model can only solve 4 × 4 and 
5 × 5 instances to optimality within the time limit. It also obtains 
good solutions for instances smaller than 13 × 13 with better quality 
than the heuristic algorithm. However, for the 13 × 13 size instance, 
the upper bound solution obtained by the MILP is of lower quality 
than the solution found by the heuristic algorithm. Notably, CPLEX 
has explored a large number of B&B nodes for this problem, averaging 
10319536. As the instance size increases, the time the MILP model 
takes to solve each B&B node also increases, leading to an exponential 
growth in computation time. Compared to the results of the MILP 
model, the heuristic algorithm’s objective values increase by about 
36%, but it solves all instances within 0.2 s. Therefore, in terms of 

https://github.com/CATS-Lab/Mower-CTPP-3D
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Table 3
Performance of the heuristic algorithm on 50 × 50 size instances.
 Instance 𝑂𝑏𝑗 𝑉 𝑎𝑟 #𝑡𝑢𝑟𝑛 𝑣̄ 𝑇 𝑖𝑚𝑒 
 0.32_1.0_0 1688.0 2.8 189 2.01 2.6  
 0.32_1.0_1 1489.6 4.8 134 2.16 0.7  
 0.32_1.0_2 1566.6 9.9 151 2.12 0.6  
 0.32_1.2_0 1293.3 31.3 144 2.00 2.4  
 0.32_1.2_1 1612.3 168.8 154 2.12 1.8  
 0.32_1.2_2 1516.6 0.0 145 2.10 1.4  
 0.35_1.0_0 1706.5 100.3 192 2.00 2.9  
 0.35_1.0_1 1705.6 0.0 196 2.00 2.5  
 0.35_1.0_2 1764.7 0.0 211 1.97 3.5  
 0.35_1.2_0 1826.2 9.8 223 1.93 1.4  
 0.35_1.2_1 1726.8 3.5 195 2.01 1.5  
 0.35_1.2_2 1789.9 0.0 213 1.94 1.5  
 Average 1640.5 13.8 179 2.03 1.9  

Table 4
Performance of the heuristic algorithm on 100 × 100 size instances.
 Instance 𝑂𝑏𝑗 𝑉 𝑎𝑟 #𝑡𝑢𝑟𝑛 𝑣̄ 𝑇 𝑖𝑚𝑒 
 0.32_1.0_0 5792.5 101.5 464 2.21 85.6  
 0.32_1.0_1 5847.7 62.2 468 2.21 97.6  
 0.32_1.0_2 5690.5 10.2 427 2.23 65.0  
 0.32_1.2_0 5695.7 0.0 438 2.22 54.1  
 0.32_1.2_1 5903.1 26.1 454 2.21 61.8  
 0.32_1.2_2 5994.8 220.9 507 2.19 38.5  
 0.35_1.0_0 6099.3 0.0 544 2.16 98.8  
 0.35_1.0_1 6284.3 74.0 577 2.14 86.4  
 0.35_1.0_2 6168.8 59.0 570 2.13 71.6  
 0.35_1.2_0 6252.4 61.0 550 2.14 91.5  
 0.35_1.2_1 6443.7 0.0 625 2.09 63.9  
 0.35_1.2_2 6352.7 31.3 592 2.12 86.0  
 Average 6043.8 53.9 518 2.17 75.1  

solution quality, the MILP model results are much better. However, 
in terms of computation time, the heuristic algorithm can solve the 
problems much faster. Therefore, we recommend using the MILP model 
for problems of approximately 13 × 13 in size and heuristic algorithms 
for larger-size problems.

6.3. Performance of the heuristic algorithm on large-size instances

The heuristic approach is applicable in tackling large-size instances. 
Tables  3–4 show the results of our heuristic algorithm on large-size 
instances with 50 × 50 and 100 × 100 maps. Column 𝑂𝑏𝑗 represents the 
optimal objective values among the five test runs. Column 𝑉 𝑎𝑟 repre-
sents the variance of objective values among the five test runs. Column 
#𝑡𝑢𝑟𝑛 is the number of turns of the solution. Column 𝑣̄ is the average 
speed of the solution. Column 𝑇 𝑖𝑚𝑒 represents the computational time.

Tables  3 and 4 show that our algorithm has a very fast computation 
speed. Specifically, for 50 × 50 instances, the instances are solved 
within 2 s, and for 100 × 100 instances, the instances are solved within 
1 min. Analyzing the instance generation parameters, the average 
computational time for obstacle probability 𝜎 = 0.32 and 𝜎 = 0.35
on 50 × 50 and 100 × 100 size instances are 1.6, 2.2, 67.1, and 
76.4 s, respectively. This result indicates that an increase in obstacles 
significantly increases the complexity of the problem. The average 
computational time for height parameter ℎ = 1.0 and ℎ = 1.2 on 50 × 50 
and 100 × 100 size instances are 2.1, 1.7, 85.8, and 66.0 s, respectively, 
showing no significant difference. Additionally, the values in column 
𝑉 𝑎𝑟 indicate that the variance across multiple runs is generally small, 
and in some cases, it is even zero. This suggests that the solution 
quality of the heuristic algorithm is relatively stable, which can be 
attributed to the fact that the randomness only arises from the SA 
component. Finally, we find a relationship between the number of turns 
and computational time. The Pearson correlation coefficients between 
column 𝑇 𝑖𝑚𝑒 and column #𝑡𝑢𝑟𝑛, and column 𝑣̄ are 0.97, indicating 
a positive correlation for these two variables. When the number of 
9 
Table 5
Performance of the heuristic algorithm on 125 × 125 size instances.
 Instance 𝑂𝑏𝑗 𝑉 𝑎𝑟 #𝑡𝑢𝑟𝑛 𝑣̄ 𝑇 𝑖𝑚𝑒 
 0.32_1.0_0 8308.2 85.8 538 2.29 71.8  
 0.32_1.0_1 8335.2 78.4 545 2.29 68.6  
 0.32_1.0_2 8549.5 58.6 616 2.26 81.0  
 Average 8397.6 74.3 566 2.28 73.8  

Table 6
Comparison between turning angle sets 1 (minimum turning angle 1

2
𝜋) and 2

(minimum turning angle 1
4
𝜋).

 Instance 1 2

 𝑂𝑏𝑗 #𝑡𝑢𝑟𝑛 𝑣̄ 𝑇 𝑖𝑚𝑒 𝑂𝑏𝑗 #𝑡𝑢𝑟𝑛 𝑣̄ 𝑇 𝑖𝑚𝑒 
 0.32_1.0_0 1688.0 189 2.01 2.6 1624.8 222 2.44 2.0  
 0.32_1.0_1 1489.6 134 2.16 0.7 1319.5 140 2.72 0.4  
 0.32_1.0_2 1566.6 151 2.12 0.6 1389.7 151 2.68 0.7  
 0.32_1.2_0 1293.3 144 2.00 2.4 1182.5 164 2.42 3.4  
 0.32_1.2_1 1612.3 154 2.12 1.8 1446.3 166 2.67 1.3  
 0.32_1.2_2 1516.6 145 2.10 1.4 1564.2 189 2.60 1.8  
 0.35_1.0_0 1706.5 192 2.00 2.9 1643.4 231 2.39 1.9  
 0.35_1.0_1 1705.6 196 2.00 2.5 1593.4 216 2.44 1.7  
 0.35_1.0_2 1764.7 211 1.97 3.5 1713.0 233 2.43 3.2  
 0.35_1.2_0 1826.2 223 1.93 1.4 1703.0 221 2.40 1.8  
 0.35_1.2_1 1726.8 195 2.01 1.5 1620.6 212 2.49 2.1  
 0.35_1.2_2 1789.9 213 1.94 1.5 1705.5 223 2.39 1.9  
 Average 1640.5 179 2.03 1.9 1542.2 197 2.51 1.8  

turns is higher, the robot needs to decelerate to zero more frequently, 
reducing the average speed.

To explore the computational limits of our algorithm, we con-
ducted additional experiments on larger instances, including 125 × 125, 
150 × 150, and 200 × 200 grids. For the 125 × 125 instances, the 
heuristic algorithm was still able to produce solutions within 2 min. 
Compared to the 100 × 100 cases, the variance of the results in-
creased slightly but remained below 100 on average. Detailed results 
are provided in Table  5.

However, for instances of size 150 × 150 and above, we observed 
that the algorithm failed to complete due to memory limitations during 
the execution of the A* search in Algorithm 2. This is due to the 
significantly larger search space introduced by point-to-point planning 
with additional constraints such as turning time. We therefore recom-
mend replacing this component with a more memory-efficient heuristic 
shortest path algorithm [37] when solving extremely large instances. 

6.4. Impact of the turning angles

In the CTPP-3DT problem, the discretized set of feasible turn-
ing angles  constrains the possible trajectories of the robot. It is 
therefore important to explore how the granularity of turning an-
gles affects both the objective value and the computational efficiency 
of the algorithm. To investigate this, we conduct experiments on 
50 × 50 instances using two angle sets: 1 = {0, 12𝜋, 𝜋,

3
2𝜋} and 2 =

{0, 14𝜋,
1
2𝜋,

3
4𝜋, 𝜋,

5
4𝜋,

3
2𝜋,

7
4𝜋}, which correspond to minimum turning 

angles of 12𝜋 and 
1
4𝜋, respectively.

As shown in Table  6, refining the turning angle granularity (i.e., al-
lowing more flexible directions) leads to improvement in objective 
values across all instances. On average, the completion time decreases 
by 5.99%. Interestingly, the number of turns increases with 2, but the 
robot’s average speed also increases. This suggests that more flexible 
turning enables longer and faster straight-line motions, which offsets 
the cost of additional turning. In terms of computation time, we observe 
no significant increase. In some cases, the runtime even decreases. This 
is because the turning angles primarily affect the trajectory connection 
phase, where a modified A* algorithm is used. While more turning 
options introduce more branching, the overall complexity remains low 
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due to the heuristic nature of A*. However, for angle sets with finer 
resolution (i.e., minimum turning angle smaller than 𝜋∕4), a denser grid 
(smaller cell width 𝑤) may be required to accurately represent feasible 
paths. For most use cases, we recommend choosing 𝜋∕2 or 𝜋∕4 based 
on the mechanical capabilities of the robot.

6.5. Comparison between different CTPP strategies

The most important features of our CTPP-3DT are the incorporation 
of safety constraints and a time-aware objective function. As discussed 
in the introduction and literature review, many existing studies neglect 
the necessity of safety constraints, which may result in dangerous 
trajectories. Moreover, some of the literature focuses on minimizing 
energy consumption rather than completion time. To explore the trade-
off between minimizing time and energy, we develop and compare four 
strategies based on variations of our proposed algorithm:

• Original Strategy: This strategy optimizes speed and accelera-
tion within safety limits to minimize total completion time, as 
introduced in previous sections.

• Conservative Strategy: To ensure absolute safety during move-
ment, this strategy uses the most conservative speed and acceler-
ation values during trajectory planning (e.g., maximum accelera-
tion is limited to 0.6 m/s2).

• Aggressive Strategy: This strategy ignores safety constraints by 
removing limits related to maximum safe slope and the speed/ 
acceleration bounds on steep terrain (e.g., maximum acceleration 
is allowed up to 1.25 m/s2).

• Energy-aware Strategy: This strategy respects the safety con-
straints, but modifies the objective function to minimize energy 
consumption instead of the completion time. Since there is no 
widely accepted energy consumption model for mowers in the 
literature, we adopt an energy consumption model for agricultural 
machines proposed in [38], given that our CTPP-3DT has broad 
applications in agricultural domains. Specifically, the power is 
modeled as a function of speed:

𝑃 (𝑣) =
(

𝑝1 + 𝑣 ⋅𝑤 ⋅ 𝑝2
)

+
(

𝑝3 + 𝑑 ⋅ 𝑣2 ⋅ 𝑝4
)

𝑤

+ (0.115𝑀 ⋅ 𝑣 ⋅ 𝑎∕3600) + 𝑃air +
(

𝑔 ⋅ 𝑚 ⋅ 𝑣 ⋅ 𝑟𝑟𝑐∕1800
)

, (25)

where 𝑃  is the required power (kW), 𝑣 is the robot speed (km/h), 
𝑤 is the working width (m), 𝑑 is the working depth (set to 0), 
𝑀 is the total vehicle and implement mass including the tank 
load (kg), 𝑚 is the implement mass (kg), 𝑎 is the inclination of 
the terrain (%), 𝑔 is the gravitational acceleration (9.81 m∕s2), 
𝑃air is the power for air conditioning and compressors (kW), and 
𝑟𝑟𝑐 is the rolling resistance coefficient (set to 0.06). Constants 
𝑝1 = −0.2683, 𝑝2 = 0.06775, 𝑝3 = 4.55752, and 𝑝4 = 0.03141
are equipment-specific parameters, which we follow the example 
values in [7].

To convert the objective to energy minimization, the dynamic program-
ming cost function Eq. (18) is modified as follows: 

𝑆(𝑞 + 1, 𝑣) = min
𝑢,𝑎

[

𝑆(𝑞, 𝑢) + 𝑃 (𝑢) ⋅ 2𝑤
𝑢 + 𝑣

]

. (26)

Following the same experimental setup as before, we test all four 
strategies on 50 × 50 size instances. Each instance is run five times, 
and we report the best objective value from the five runs. The vari-
ances observed are consistent with those reported in Section 6.3, and 
therefore, we do not report variance in this section for simplicity.

Fig.  9(a) compares the completion time and energy consumption of 
the four strategies on 50 × 50 size instances. It can be observed that 
both the completion time and energy consumption of the conservative 
strategy are significantly higher than those of the other three strate-
gies by more than 100%. This indicates that adopting a conservative 
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approach to ensure absolute safety severely compromises operational 
efficiency.

To better examine the differences among the remaining three strate-
gies, we provide a zoomed-in view on the right side of Fig.  9(a). The 
results show that the performance of the energy-aware strategy is very 
close to that of the time-aware strategy (i.e., the original strategy). 
Although power consumption is positively correlated with robot speed, 
increasing speed also reduces the overall operation time, which in turn 
lowers total energy consumption. This indicates that in some cases, 
minimizing energy usage and minimizing completion time are not con-
flicting objectives but can be aligned. Specifically, when the marginal 
increase in power due to higher speed is offset by the reduction in 
operation time, both energy-aware and time-aware strategies may yield 
similar results.

The difference between the aggressive and original strategies is also 
smaller compared to the gap between the conservative strategy and 
others. On average, the completion time of the aggressive strategy is 
approximately 2.9% shorter than that of the original strategy. However, 
we observe that the aggressive strategy violates safety constraints an 
average of 69.1 times per instance, indicating that it frequently places 
the robot in unsafe conditions. To further investigate the differences 
between the aggressive and original strategies under varying terrain 
conditions, we generated five additional instances with steeper terrain 
(ℎ = 1.3 m, size 50 × 50). The results are shown in Fig.  9(b). Compared 
to the flatter terrain in Fig.  9(a), the performance gap between the 
two strategies widens under steeper conditions. In this case set, the 
average completion time difference increases to 6.5%, and the number 
of safety constraint violations by the aggressive strategy rises to 91.4. 
Overall, the results show that in steeper terrains, the aggressive strategy 
achieves faster coverage at the cost of significantly higher safety risk. 
This demonstrates the necessity of incorporating safety constraints 
in trajectory optimization. The original strategy effectively balances 
safety and efficiency, keeping the overall completion time within an 
acceptable range while ensuring safe operation.

6.6. Sensitivity analyses

Since our CTPP-3DT is a new variant of the CPP, we conduct 
sensitivity analyses on key parameters, including the maximum safety 
slope 𝜃+, the speed and acceleration limit 𝑣+ and 𝑎+, and turning time 
𝑡turn, to investigate the characteristics of this variant. Experiments are 
performed on 50 × 50 size instances.

Speed and acceleration limit. Speed and acceleration limits affect 
the robot’s moving speed, thereby influencing its operational efficiency. 
When the robot moves faster, its efficiency improves. We analyze the 
influence of these parameters by testing three settings, which represent 
low, medium, and high levels of robot performance. The detailed 
parameters for each setting are provided in Table  7. Fig.  10 shows 
the results under these three parameter settings. It shows that when 
the robot is set to the medium speed mode, the average completion 
time decreased from 1644.5 to 1430.8, a reduction of 13.0%. The 
robot’s average speed increased from 2.03 to 3.34, an improvement 
of 33.0%. When the robot is further adjusted to the fast mode, the 
completion time continues to decrease by 12.5%, and the average 
speed increases by 24.0%. This conclusion indicates that increasing 
speed and acceleration can significantly enhance the robot’s operational 
efficiency.

Turning time. Now, we study the impact of the robot’s turning 
time. From Tables  3–4, we can observe that covering 50 × 50 and 
100 × 100 size instances requires an average of 198 and 580 turns, 
respectively, indicating that turning time significantly affects the total 
time consumption. Therefore, we tested the results for 𝑡turn = 2, 1, and 
0.5. As shown in Fig.  11, the average completion time significantly 
reduces when 𝑡turn decreases. When 𝑡turn decreases from 2S to 1S, 
the average completion time decreases by 11.3%, i.e., 185.3. When 
𝑡  decreases from 1S to 0.5S, the average completion time decreases 
turn
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Fig. 9. Comparison between the four CTPP strategies in 50 × 50 size instances.
Table 7
Three speed and acceleration parameter settings for the sensitivity analyses.
 Description Setting 1 Setting 2 Setting 3  
 Maximum speed (m/s) 3.5 5.0 6.5  
 Acceleration range on [−0.1, 0.1] slope (m/s2) [−2.5, 1.25] [−2.5, 1.7] [−2.5, 2.2] 
 Acceleration range on [−0.3,−0.1] ∪ [0.1, 0.3] slope (m/s2) [−1.4, 0.6] [−1.4, 1.0] [−1.4, 1.4] 
by 3.0%, i.e., by 43.5. These reductions are slightly greater than the 
decrease in turning time, indicating that reducing 𝑡turn allows the 
algorithm to find more efficient trajectories.

Maximum safety slope. In CTPP-3DT, the maximum safety slope 
𝜃+ influences the range of the robot’s movement. We analyze the influ-
ence of this parameter by changing its value from 0.3 to 0.4 and 0.5. 
Fig.  12 shows the results under different values of 𝜃+. We can observe 
that when 𝜃+ = 0.4, the average objective function value is slightly 
lower than that for 𝜃+ = 0.3. However, the results for 𝜃+ = 0.5 are very 
close to those for 𝜃+ = 0.4. This indicates that increasing the maximum 
safety slope can enhance the robot’s operational efficiency, but the 
marginal benefits of further increasing the maximum safety slope with 
11 
current technology are limited. These limited marginal benefits could 
be due to the smoothing of map heights in our instances.

7. Conclusion

To address the safety challenges of automated mowing on uneven 
terrain, this paper proposes the CTPP-3DT for automated lawn mow-
ers and other agricultural machines. In this problem, we introduce 
height onto traditional 2D maps to calculate the robot’s slope along 
its trajectory. Safety constraints are defined as the maximum allowable 
slopes for robot movement and the speed and acceleration limits under 
varying slopes. The problem aims to determine the optimal path and 
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Fig. 10. The impact of the speed and acceleration limit.

Fig. 11. The impact of the maximum turning time.

Fig. 12. The impact of the maximum safety slope.

speed that minimizes the completion time while satisfying the safety 
constraints.

To tackle this problem, the paper presents a solution framework em-
ploying two methods. The exact algorithm determines optimal solutions 
for small-size scenarios using a MILP model based on a graph expansion 
method to represent turning using dummy arcs. The heuristic algorithm 
divides the area into cells via a tailed RBCD. The candidate trajectories 
12 
to cover and connect cells are generated based on a modified A* algo-
rithm and dynamic programming. Finally, an SA algorithm is applied 
to select the optimal trajectories in the candidate trajectory set.

Experiments are conducted based on the instances generated by a 
random algorithm. The results show that: (a). The MILP model performs 
well for instances smaller than 13 × 13, while the heuristic algorithm is 
more effective for larger instances. (b). Incorporating safety constraints 
in the CTPP-3DT avoids the potentially dangerous trajectories observed 
in the aggressive strategy, while achieving over a 40% reduction in 
completion time compared to the conservative strategy. This highlights 
that incorporating safety constraints can significantly improve both 
safety and efficiency. (c). Increasing the mower’s movement speed, 
acceleration, and turning speed can significantly reduce completion 
time, though the benefits of increasing the safety slope need further 
testing with real-world data.

As a potential direction for future work, more scalable exact meth-
ods such as dynamic programming, spanning tree decomposition, or 
branch-and-cut algorithms could be explored. These approaches may 
help improve solution quality or provide theoretical guarantees without 
incurring the computational cost of solving large-scale MILPs. Besides, 
although we conducted a preliminary comparison between the energy-
aware and time-aware strategies in the experimental section, the energy 
consumption model used may differ from that of actual lawn mowers, 
both in terms of model structure and parameter settings. For example, 
the energy model adopted in this study does not account for the effect 
of acceleration, which is an important factor in vehicle dynamics and 
has been highlighted in literature [39]. Moreover, the energy-aware 
strategy considered in this study is not a fully tailored algorithm for op-
timizing energy consumption. Comparisons with more advanced energy 
optimization approaches from the literature may yield different results. 
On the hardware side, considering the differences between generated 
instances and real-world data, we plan to test the algorithm using real-
world data instead of randomly generated instances. We aim to develop 
a perception system based on RGB-D cameras and a mapping algorithm 
for the localization of the mower and collect real-world data for testing.
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