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Abstract: This study proposes an AI-powered digital twin (DT) platform designed to
support real-time traffic risk prediction, decision-making, and sustainable mobility in
smart cities. The system integrates multi-source data—including static infrastructure maps,
historical traffic records, telematics data, and camera feeds—into a unified cyber–physical
platform. AI models are employed for data fusion, anomaly detection, and predictive
analytics. In particular, the platform incorporates telematics–video fusion for enhanced
trajectory accuracy and LiDAR–camera fusion for high-definition work-zone mapping.
These capabilities support dynamic safety heatmaps, congestion forecasts, and scenario-
based decision support. A pilot deployment on Madison’s Flex Lane corridor demonstrates
real-time data processing, traffic incident reconstruction, crash-risk forecasting, and eco-
driving control using a validated Vehicle-in-the-Loop setup. The modular API design
enables integration with existing Advanced Traffic Management Systems (ATMSs) and
supports scalable implementation. By combining predictive analytics with real-world
deployment, this research offers a practical approach to improving urban traffic safety,
resilience, and sustainability.

Keywords: highway system; Advanced Traffic Management Systems; traffic safety;
telematics data

1. Introduction
As vehicle numbers continue to rise, traffic congestion, safety, and environmental

impacts have become pressing challenges for transportation agencies worldwide. In pur-
suit of more sustainable and efficient mobility, the transportation industry has adopted
Advanced Traffic Management Systems (ATMSs), which leverage data management and
analytical tools to disseminate real-time traffic information via electronic signs, mobile apps,
and other channels [1]. ATMSs typically comprise multiple components such as traffic
signal control systems [2,3], monitoring and surveillance equipment, incident detection
and management tools, and information dissemination mechanisms [4].

However, traditional ATMSs generally focus on collecting and broadcasting traffic
data [5] rather than forming a continuous, adaptive model of the transportation network.
As transportation infrastructure and vehicles become increasingly instrumented and inter-
connected, a vast number of real-time and historical data are becoming available. While
such data can potentially fuel more sophisticated analytics and more proactive responses,
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existing ATMSs often lack the mechanisms to integrate, simulate, and predict future traffic
scenarios in a holistic manner [6].

Digital twin (DT) technology addresses these gaps by bridging the physical trans-
portation network with a dynamic virtual counterpart [7–9]. Originating from product
lifecycle management and later expanded by NASA for aircraft maintenance [10], DTs
have evolved into cyber–physical systems that synchronize real-world conditions with
computational models [11]. This virtual representation not only ingests large volumes of
data but also processes, simulates, and learns from them, thereby enabling real-time and
predictive insights. First, it continuously synchronizes with evolving physical conditions,
creating a near-real-time mirror of the road network [12]. Second, it can predict and test
future traffic states—such as congestion pockets and incident evolution—under varying
scenarios [13]. It allows practitioners to optimize operations by identifying effective inter-
ventions (e.g., signal control, traffic rerouting, or emergency service deployment) before
conditions worsen. Finally, DTs support proactive intervention by simulating emergency
scenarios in a risk-free virtual environment, enhancing urban resilience [14].

In Advanced Traffic Management Systems (ATMSs), this proactive DT approach
significantly enhances operational efficiency. Integrating technologies such as computer
vision, sensor networks, real-time data processing, and predictive analytics enables in-
stant responses to changing traffic conditions, while radar–camera fusion further refines
monitoring accuracy [15,16]. Cameras in a DT system yield insights into traffic patterns
and incidents, and by combining real-time, static, and historical information, the system
supports faster and more accurate decision-making. Data platforms like WisTransPortal
(https://transportal.cee.wisc.edu/ (accessed on 1 May 2025)) augment these capabilities
with extensive historical records of speed, occupancy, and incidents, fostering deeper
predictive analytics and event detection. Overall, the integration of these emerging tech-
nologies within a DT framework creates a dynamic, responsive ATMS capable of adapting
to fluctuating conditions, reducing congestion, and enhancing road safety. Indeed, every
aspect of modern transportation, from vehicle operation and traffic control to infrastructure
maintenance, stands to benefit from a well-developed digital twin ecosystem.

Various road traffic DT systems are explored and implemented to enhance traffic
management systems. Figure 1 presents a conceptual roadmap of road traffic digital twin
systems, illustrating how diverse data types and modeling approaches—from historical
records to real-time sensor streams—can be integrated to support safety analysis [17–19]
and mobility decisions across multiple temporal layers. Here are some specific examples:
(1) Integrated Corridor Management (ICM) in the U.S. [20]: ICM initiatives in the U.S. use
DTs to create comprehensive models of transportation corridors. These virtual models
integrate various data sources, including traffic sensors and public transportation systems,
to enhance traffic flow and efficiency. (2) New York City’s Traffic Optimization [21]: In
New York City, an initiative to create a digital replica of the entire city was undertaken to
improve transportation and travel systems. By building this DT, engineers could develop
digital road systems underground and predict how these new systems would integrate with
existing roads. This approach allows for better planning and management of infrastructure,
including predicting maintenance needs for new underground roads. (3) Smart City
Initiative [22]: The U.S. conducted research on utilizing DT technology to optimize city
traffic. This project aimed to create virtual replicas of urban areas to analyze traffic patterns,
predict congestion points, and optimize traffic flow. (4) Traffic Signal Optimization [23]:
In various cities across the U.S., DT technology is being employed to optimize traffic
signal timings. By creating a virtual model of the traffic system, engineers can test and
implement the most efficient signal patterns, reducing congestion and improving flow
during peak times. These examples showcase the diverse ways in which DT technology is
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being used to address traffic management challenges in the U.S., highlighting its potential
to enhance urban mobility, safety, and sustainability. At a macro-level, DTs can facilitate the
coordinated perception of traffic situations, the dynamic timing of traffic lights, traffic flow
statistics, and congestion alerts at intersections. By connecting the physical infrastructure
of cities with information technology facilities, and based on integrated data modeling, DTs
enable intelligent prediction and decision-making for smart traffic and smart cities. At a
micro-level, DTs can detect and send alerts about traffic incidents, providing drivers with
static information about road infrastructure and dynamic operational information, thereby
ensuring and enhancing safety.
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The immense volumes of data that DT platforms collect, transmit, and process also
make them attractive, high-value cyber targets. False-data injection, man-in-the-middle,
and denial-of-service attacks aimed at the physical layer, vehicle-to-DT links, or supporting
cloud micro-services can distort the twin’s situational awareness, trigger unsafe control ac-
tions, and cascade through networked corridors [24]. Recent research systematically probes
these risks—dissecting attacks on connected and automated vehicles (CAVs) [25–27], ex-
posing vulnerabilities in vehicle-to-digital twin communication links [28], and developing
in-vehicle intrusion detection and defense schemes [29].

Consequently, for the state of Wisconsin, an ATMS empowered by DT technology can
effectively utilize roadside cameras to capture real-time traffic conditions as reported on
the 511 Wisconsin website [30]. By employing a DT system that utilizes traffic data, this
initiative could strengthen traffic monitoring and provide real-time decision support. In
the long term, these advancements are poised to enhance the safety, mobility, resilience,
and sustainability of Wisconsin’s highways.

This study proposes a DT-based traffic management system that integrates AI-driven
analytics, real-time data fusion, and predictive modeling to enhance Advanced Traffic
Management Systems. By leveraging both historical and real-time traffic data, the system
enables more effective decision-making for traffic professionals. The research aims to
demonstrate the feasibility and potential of this approach through an initial deployment
on Flex Lane in Madison, showcasing how DT can improve traffic monitoring, incident
response, and operational efficiency.

The main contributions of this AI-enabled DT framework are as follows:
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1. Integration with existing ATMS platforms. The proposed DT framework ingests
heterogeneous data inputs (camera, Lidar, telematics, etc) and directly hooks into
WisDOT 511 and WisTransPortal live streams.

2. Real-world implementation. Complete DT pipeline is deployed on Madison’s Beltline
Flex Lane corridor, where it mirrors field conditions, reconstructs incidents, and drives
edge–cloud AI models for traffic monitoring and predictive analytics.

3. Exploration of future applications such as eco-driving, where the DT platform could
support optimized vehicle control.

The rest of the paper is organized as follows: Section 2 overviews the DT system.
Section 3 introduces the platform structure. Section 4 shows the deployment at Flex Lane
in Madison. Section 5 concludes the research and discusses future research.

2. Digital Twin System Overview
The primary objectives of this DT platform are twofold: (1) Enhance traffic man-

agement and decision-making processes. (2) Develop APIs to seamlessly integrate DT’s
capabilities into existing platforms, including WisDOT ATMS systems and existing data
platforms such as WisTransPortal. The integration of these platforms can further enhance
decision-making processes and real-time management capabilities for traffic profession-
als, especially the local Traffic Management Center. The capabilities of the proposed DT
platform span three temporal dimensions, offering a comprehensive approach to traffic
management. The general structure of the DT platform is shown in Figure 2.
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Figure 2. DT system overview.

3. Platform Architecture
The architecture is divided into three parts: data architecture, system components,

and API and user interface integration.

3.1. Data Layer

The DT system integrates both static (historical) and real-time data to provide a holistic
view of traffic dynamics.

3.1.1. Static Data

Static data provide the foundational information required for traffic modeling, simula-
tion, and predictive analytics in a DT system. This dataset consists of four key components:
road network and infrastructure data, historical traffic flow data, accident and incident
records, and regulatory constraints. By integrating these diverse sources, the DT system con-
structs a comprehensive and data-driven representation of road traffic conditions. Figure 3
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illustrates the process of stationary data collection using a full-scale Level 3 autonomous
vehicle and the resulting high-definition mapping.
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ping. (a) Full-scale Level 3 autonomous vehicle for data collection. (b) High-definition mapping
precepted by vehicle. (c) Reconstructed high-definition mapping. (d) Reconstructed highway corridor.
(e) Map of the highway corridor.

Road network and infrastructure data: These data include road geometry, lane
configurations, and the spatial distribution of traffic control elements such as traffic signals
and speed limits. Additionally, high-definition maps, generated from LiDAR and camera-
based sensing, provide a detailed three-dimensional reconstruction of road environments.

Historical traffic flow data: These data capture long-term variations in vehicle move-
ment and congestion patterns, forming the basis for demand analysis and capacity planning.

Accident records: These datasets contain information on past crash events, including
their locations, severity levels, and contributing factors such as weather conditions or driver
behavior. These data help analyze high-risk areas, model potential accident scenarios, and
evaluate the effectiveness of various mitigation measures. Integrating accident data with
road network features and historical traffic conditions enables a deeper understanding of
how roadway characteristics influence crash frequency and severity.

Regulatory and policy data. These datasets encompass speed regulations, lane usage
restrictions, toll pricing mechanisms, and land-use zoning policies that shape mobility
patterns, which help the DT system adhere to real-world constraints.

This dataset supports model training, providing baseline traffic conditions and helping
to simulate potential future scenarios.

3.1.2. Real-Time Data

Real-time data enable dynamic traffic monitoring, immediate anomaly detection, and
rapid response to evolving traffic conditions. Key sources include the following:

Traffic monitoring systems, including roadside cameras, loop detectors, and radar-
based sensors, provide live feeds of traffic conditions, congestion levels, and unexpected
disruptions such as accidents or roadwork.

Telematics data: Onboard sensors in connected vehicles transmit information on speed,
acceleration, braking behavior, and fuel consumption, contributing to a more detailed
understanding of driving patterns [31].

IoT-enabled and GPS-based traffic monitoring data: These are data from smart traffic
signals, mobile navigation applications, and GPS-equipped vehicles.
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3.1.3. Data Fusion and Processing

To integrate, clean, and store the data in a structured manner, the DT system establishes
a cohesive and comprehensive traffic perception framework that enables cooperative
situational awareness. The fusion and processing pipeline consists of three key components:
data integration, anomaly detection, and efficient data storage.

Data Cleaning and Anomaly Detection. Traffic data are inherently noisy, often af-
fected by missing sensor readings, transmission errors, or outlier values resulting from
malfunctioning devices. Automated anomaly detection algorithms are employed to identify
inconsistencies, such as abrupt speed changes, sensor discrepancies, or traffic congestion
patterns that deviate from expected norms. These anomaly detection methods help un-
cover operational irregularities, such as unintended lane deviations, illegal maneuvers, or
bottlenecks caused by accidents.

Data Fusion and Integration. Since the data originate from multiple sources—cameras,
IoT-enabled infrastructure, V2X communication, and GPS—geospatial synchronization
techniques are applied to map all data points accurately onto a unified road network
model. Additionally, machine learning-based time series fusion allows the system to
combine past trends with real-time fluctuations, generating accurate traffic forecasts and
congestion predictions. This multi-source integration also supports cooperative perception,
where vehicles, infrastructure, and traffic control centers share synchronized traffic state
information for enhanced decision-making.

Data Storage and Retrieval. Given the continuous influx of high-volume traffic
data, scalable database architectures—such as distributed cloud storage and time-series
databases—are implemented to support fast retrieval and efficient querying.

In consideration of privacy and data security, the DT stores aggregated traffic in-
formation (e.g., flow rates, congestion indices, and anonymized trajectories) that do not
involve personally identifiable information. Under routine traffic analysis conditions, the
system explicitly avoids capturing sensitive individual-level details, including license
plates and facial features. For safety-critical scenarios such as real-time accident detec-
tion and emergency response, the platform may temporarily capture identifiable details
(e.g., license plates) to support immediate interventions and follow-up procedures. In such
cases, privacy protection guidelines will be strictly followed to promptly anonymize or
remove sensitive information once the incident response is complete, ensuring compli-
ance with applicable privacy regulations and maintaining minimal storage of personal
data. Additionally, real-time data exchanges between the DT platform and external data
providers utilize Transport Layer Security (TLS) protocols for secure transmission. The
data management processes of the platform aim to align with internationally recognized
privacy standards, including principles similar to the General Data Protection Regulation
(GDPR), particularly regarding the anonymization of personal data and the minimization
of sensitive information storage.

3.2. Function Layer

The DT platform integrates real-time monitoring, simulation-based analysis, and AI-
driven decision-making, ensuring efficient traffic flow optimization and incident response.

3.2.1. DT Core and Simulation Engine

As the primary processing engine, digital space constructs a virtual representation of
real-world traffic conditions using simulation platforms such as CARLA [32], SUMO [33],
and Unity [34]. It generates a real-time digital replica of traffic conditions, enabling dynamic
interactions between vehicles, infrastructure, and environmental factors. The simulation
platform can support event reconstruction, allowing for post-accident analysis and im-
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provement. Table 1 summarizes the key features of several candidate platforms. Unity
was selected due to its superior support for agent diversity, the real-time interactions of
multi-agents, and extensibility, making it more suitable for city-scale DT applications.

Table 1. Comparison of candidate simulation platforms for digital twin implementation.

Feature CARLA SUMO Unity

Primary Focus High-fidelity autonomous-vehicle
research and development

Macro-/micro-scale traffic flow
modeling and policy evaluation

General-purpose 3D engine used
to build interactive elements

Agent Diversity Typical traffic participants: vehicles,
pedestrians, cyclists, static obstacles, etc. Vehicles and pedestrians Virtually unlimited (vehicles,

robots, machinery, etc.)
Real-Time Interaction Yes: real-time single-user interaction No Yes: real-time multi-user interaction

Visual Fidelity Photorealistic UE 5 graphics; dynamic
weather/lighting 2D or minimalist 3D Real-time rendering (HDRP/URP,

VR/AR ready)
Sensor-Suite Simulation Camera, LiDAR, Radar, GNSS, etc. None built-in Third-party or custom plug-ins

Data Integration and APIs
Python/C++ API, ROS 2 bridge,

Digital-Twin Tool imports OSM and
live map data

TraCI for stepwise control and
telemetry streaming

Real-time IoT stream support
(REST, WebSockets, etc.)

GIS/Map Import
One-click OSM, Unreal digital twin
tool, and procedural meshing of real

city blocks

Native OSM importer; supports
SUMO-net-convert for custom

shapefiles
GIS plug-ins or custom pipeline

3.2.2. Prediction and Analysis Module

This module enables scenario testing, allowing transportation planners to evaluate
different traffic management strategies before implementing them in real-world conditions.
Scenario-based simulation models the effects of interventions such as lane closures, adap-
tive signal control, and detour strategies, providing a risk-free environment to assess their
impact. Predictive analytics, powered by AI models, estimates accident risks, congestion
patterns, and travel times, enabling proactive decision-making. Furthermore, advanced
decision-support methodologies (e.g., optimization and data-driven approaches) are in-
tegrated into fine-tuning traffic signal timings and routing strategies, enhancing overall
network efficiency. These optimization capabilities support downstream applications such
as adaptive signal control, crash risk mitigation, and eco-driving.

3.2.3. Decision-Making Module

The decision-making module centers on functions that have been verified in our Flex
Lane deployment while leaving room for future enhancements. The first function is incident
awareness. Crash detections produced by the fusion pipeline reach the operator panel
within five seconds. The panel shows the location, lane blockage, and speed impact so
that staff can issue Wisconsin 511 alerts without delay. The second function is eco-driving
support. The PERL-based controller streams an energy-optimal speed profile to the Vehicle-
in-the-Loop test car, and the recorded performance data are stored in the digital twin for
data cleaning and merging. This closed loop connects simulation with field practice.

3.3. Interface Layer

Seamless integration with existing transportation management platforms is essen-
tial for maximizing the effectiveness of the DT system. By leveraging APIs from local
traffic management systems and other traffic data providers, the system ensures robust
real-time data exchange, reducing redundancy and making full use of available infras-
tructure. Additionally, an intuitive user interface enables traffic professionals to monitor
conditions, analyze trends, and make informed decisions based on both historical and
real-time insights.
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3.3.1. API Development and System Integration

To enhance interoperability, the DT system directly integrates with existing platforms.
By utilizing standardized APIs from government and private sector sources, the system
minimizes the need for additional sensor deployment and maximizes the use of established
traffic-monitoring infrastructure. While our current implementation focuses on integrating
traffic APIs and sensor feeds, future versions will consider aligning with transportation
communication standards such as NTCIP and TMDD. This would improve interoperability
with signal controllers, dynamic message signs, and other field devices commonly used in
ATMS deployments.

3.3.2. User Interface and Decision Support

A comprehensive dashboard interface enables traffic operators, city planners, and
emergency responders to visualize traffic conditions, monitor system alerts, and access
decision-support tools. The Visual Traffic Twin provides an interactive, real-time repre-
sentation of road network conditions. The alert system generates automated notifications
for critical events, including accidents, severe congestion, and weather-related hazards.
These alerts are synchronized with traffic management platforms, allowing traffic control
centers to take immediate action. For data-driven analysis, the system offers customizable
reporting tools, enabling users to extract insights from historical trends and real-time up-
dates. These reports support policy evaluation, infrastructure planning, and traffic safety
assessments. The layered architecture of the digital twin platform, including data sources,
processing pipelines, core services, and client interfaces, is illustrated in Figure 4.
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4. Case Study: Flex Lane Deployment
Based on the framework above, the UW-Madison team has developed a preliminary

demonstration of the DT concept on Madison’s Flex Lane, Wisconsin’s first initiative of this kind,
situated along the Beltline in Dane County. The specific work related to the data processing,
digital twinning, and decision-making modules in our project is detailed as follows:

4.1. Data Processing

The road traffic digital twin system employs advanced data fusion techniques, includ-
ing temporal alignment, spatial correlation, and feature extraction, to integrate real-time
data from the WisDOT 511 platform [30] with historical information from existing data
platforms. Temporal alignment synchronizes timestamps, ensuring accurate integration,
while spatial correlation harmonizes spatial attributes. Feature extraction identifies rel-
evant attributes, creating a unified dataset. To enhance data quality, the system utilizes
data cleaning solutions, such as outlier detection, imputation strategies for missing values,
and noise reduction through signal-processing algorithms. This comprehensive approach
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ensures the reliability of the integrated dataset, forming the basis for advanced analytics.
The WisTransPortal API [35] provides access to historical traffic data, including vehicle vol-
ume, speed records, and incident reports, supporting longitudinal analysis and predictive
modeling. The WisDOT 511 API facilitates the real-time ingestion of traffic incidents, road
closures, and congestion updates, allowing the DT to reflect current network conditions
with minimal latency, as shown in Figure 5.
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In addition to numerical sensor data, video-based traffic analysis plays a crucial role
in real-time vehicle detection, tracking, and classification. The system utilizes computer
vision techniques to extract vehicle information from surveillance cameras. Object detection
models (e.g., YOLO [36]) and multi-frame tracking techniques (e.g., DeepSORT [37]) are
employed to identify and track vehicles, pedestrians, and other road users.

Although camera-based object detection and tracking have reached maturity and
widespread use, their accuracy in capturing vehicle trajectories can still be compromised
due to various factors. Challenges include poor visibility in adverse weather conditions
such as rain or fog [38,39], as well as inherent camera limitations like perspective distortion
and reduced detection accuracy in distant regions. These issues can result in fragmented
trajectories, unrealistic estimates of speed and acceleration, and significant data gaps.

To align video-based detection results with real-world coordinates, we first project
each pixel point (u, v) from the image plane to geographic space using a homography
matrix, H, under a ground-plane assumption:

Pworld = H·

u
v
1

 (1)

The matrix, H ∈ R3×3, is computed through feature-point calibration by solving

H = argmin
H

N

∑
i=1

∥∥∥H·ρimg
i − ρutm

i

∥∥∥ (2)

where ρ
img
i and ρutm

i are the ith pair of corresponding points in the image and UTM
coordinate system, respectively.

Even with this mapping, video-based trajectories are still affected by noise and data
dropouts. We model the observed trajectory as a noisy estimate of the true one:

P̂video
t = Ptrue

t + εt (3)

where P̂video
t is the video-detected position at time t, and εt captures noise and distortion.

https://511wi.gov/
https://511wi.gov/


Sustainability 2025, 17, 4391 10 of 17

Telematics data offer essential complementary support, providing continuous and
reliable trajectory information such as the average speed, vtel; the precise location; and
a consistent travel direction, θtel. While telematics data do not directly replace missing
camera detections, they effectively constrain predicted vehicle trajectories within realistic
bounds, correcting inaccuracies and smoothing irregularities. For instance, during frames
where the video signal is lost or unreliable, we estimate the vehicle’s updated position
based on telematics cues:

∼
P

fused

t+∆t = P̂video
t + vtel·∆t·

[
cos θtel

sin θtel

]
(4)

Thus, the final fused trajectory is

Pfused
t =

P̂video
t , if confidence is hight

∼
P

fused

t+∆t , otherwise
(5)

In this way, telematics data constrain and correct the vehicle trajectory within realistic
bounds, smoothing irregularities and ensuring trajectory continuity. Integrating telematics
data with video-based detections thus significantly enhances data reliability across diverse
environmental and technical conditions. A data fusion example under a rainy nighttime
scenario is shown in Figure 6. In such low-visibility conditions, the standalone video-based
detection pipeline achieved only a 23% vehicle detection success rate, with estimated speeds
showing deviations as high as 214 m/s due to intermittent tracking and misidentification.
After integrating telematics data, the system was able to constrain speed and acceleration
estimates within realistic physical limits and successfully reconstruct 95% of the missing or
misclassified detection frames.
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Furthermore, high-definition mapping data are collected using autonomous vehicles
(AVs) with radar and cameras from our lab. These data serve as a static backdrop against
which real-time events are analyzed.

https://511wi.gov/
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Figure 7 depicts our LiDAR–camera fusion workflow for work-zone mapping. A test
vehicle equipped with a roof-mounted 32-beam LiDAR and an industry camera is driven
through an active work zone, simultaneously acquiring dense point clouds (Figure 7a) and
high-definition video frames (Figure 7b). After extrinsic calibration, each LiDAR sweep is
time-synchronized with its corresponding image. A vision pipeline detects cones, drums,
speed-limit boards, and other traffic-control devices in the image. To assign semantic labels
to 3D LiDAR points, we project each LiDAR point, PL, into the image using:

p = ∏
(

KTCLPL
)

, ∏
(
[X, Y, Z]T

)
=

(
X
Z

,
Y
Z

)
(6)

where TCL is the extrinsic transformation from LiDAR to camera, and K is the camera-
intrinsic matrix. If the projected pixel, p, falls within the segmentation mask, S↕, of class ↕,

the point is assigned that label. The final annotated point cloud is PF = {(xi, yi, zi, li)}N
i=1,

which is an accurately geo-referenced, semantically annotated point cloud (Figure 7c).
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The fused 3D model enables three key applications. First, it can be loaded into
simulators to create a digital twin for rapid Vehicle-in-the-Loop tests and traffic-flow studies.
Second, because every cone, sign, and taper is metrically geo-referenced, the software can
automatically compare offsets, buffer lengths, and device spacing with MUTCD or state
rules, eliminating most field surveys. Third, overlaying observed or simulated vehicle
paths on the annotated map lets analysts evaluate sight-line obstructions, merge conflicts,
and speed–control effectiveness, pinpointing segments where crash risk is highest.

4.2. Digital Twinning

Another function of the proposed system is digital twinning, involving the creation
of a virtual environment using Unity, shown in Figure 8. This environment serves as a
dynamic replica of the real-world traffic scenario, enabling synchronous modeling and
reconstruction. Utilizing video recognition technologies, road users are identified and
tracked, and their trajectories can be integrated into the virtual environment. Notably, the
digital twinning process facilitates the continuous recording of historical traffic conditions
in a cost-effective manner. By employing vectorization techniques, the system transforms
intricate video data into a simplified and manageable format, reducing storage requirements
and enabling efficient retrieval for extensive historical data analysis.

It is worth noting that the digital twinning process enables the permanent recording
of historical traffic conditions at a low cost. Through vectorization techniques, the system
transforms complex video data into a simpler, more manageable format. This not only
significantly reduces the storage requirements but also allows for easy retrieval and analysis
of historical data for long-term planning and evaluation.
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4.3. Decision Making

The processed outputs of the digital twin system—such as risk indicators, traffic state
forecasts, and anomaly alerts—lay the foundation for future decision-making modules.
These insights can support adaptive signal control, emergency response coordination, and
strategic traffic rerouting. With the modular architecture in place, the system is designed to
accommodate decision-support tools in future deployments, ensuring that analysis results
are actionable and seamlessly integrated with existing traffic management workflows.

4.4. Application Case 1: Crash Monitoring and Handling

The digital twin system provides a proactive approach to crash monitoring and response
by detecting potential accident risks and identifying actual crash incidents in real time. This
capability is primarily realized through detailed trajectory data analysis, leveraging connected
vehicle telematics and real-time traffic dynamics. Accurate crash risk prediction is crucial for
timely interventions, emergency preparedness, and efficient traffic management.

As a basic instance of our learning framework, we implement a lightweight Spatio-
Temporal Convolutional Neural Network (ST-CNN) to demonstrate how crash risk can be
inferred directly from local trajectory dynamics. To model spatio-temporal risk patterns
from trajectory data, we discretize the study area into a two-dimensional grid of spatio-
temporal cells. Each cell, denoted as celli,j, corresponds to a time interval, i, and a spatial
segment, j. The spatial dimension is divided by road segments or fixed-length spatial bins
(e.g., 50 m), and the temporal dimension is divided by uniform time windows (e.g., 7 s).

The input data are represented as a discretized traffic tensor, denoted as X ∈ RT×S×C,
where T represents the number of temporal intervals; S the number of spatial segments;
and C = 3 the channel dimension corresponding to average speed, average accelera-
tion, and traffic flow. Each spatio-temporal cell (i, j) thus stores the local feature vector
xi,j =

[
vi,j, ai,j, qi,j

]
, where vi,j and ai,j are the average speed and average acceleration of all

vehicles observed in cell (i, j), respectively. qi,j is the traffic flow, defined as the number of
vehicles passing through the cell during the interval.

In the model selection process, we considered the trade-off between comprehensive-
ness and training complexity. While more advanced models and richer feature sets can
incorporate additional influencing factors, they require significantly longer training time
and more tuning effort. Moreover, due to the inherent randomness in traffic systems,
increased model complexity does not always lead to more stable or accurate predictions.

To effectively capture both the local and broader spatio-temporal propagation patterns
of crash risks, the ST-CNN applies convolutional operations across this structured grid.
A spatio-temporal kernel parameterized by W ∈ R(2ht+1)×(2hs+1)×C and bias, b, is used to
perform the convolution. The forward mapping for each cell (i, j) is calculated as

zij = ∑
(m,n)∈N (i,j)

Wm,n·xm,n + b (7)
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where N (i, j) is the local neighborhood of celli,j. Wm,n is the convolution weight for cellm,n.
σ(·) is a sigmoid activation function that maps the result to a probability score.

Subsequently, the predicted crash probability, ŷi,j, for each cell is obtained through a
sigmoid activation function:

ŷi,j = σ
(
zij

)
=

1
1 + e−zij

(8)

The goal of this convolutional structure is to learn how abnormal dynamics in sur-
rounding cells contribute to increased crash risk in a specific location and time window.

As illustrated in the example trajectory heatmap in Figure 9, the cell highlighted in
the grid exhibits a high predicted crash probability of 0.82. This risk level is inferred by
aggregating the local traffic dynamics within the cell and its surrounding neighborhood.
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The digital twin will next integrate a safety–risk forecasting module that goes beyond
crash detection, as shown in Figure 10. The module will train spatio-temporal models—such
as bidirectional LSTMs and lightweight transformers—on historical crashes, traffic volume,
weather, and roadway geometry. It will stream the model’s probability scores into a live heatmap
layer, giving operators a color-coded view of segments that are likely to experience a crash in
the next five to ten minutes. These early warnings will allow the Traffic Management Center to
post dynamic speed advisories, adjust signal timing, or stage emergency crews in advance. This
proactive layer will turn the current crash-monitoring workflow into a full closed-loop system
that predicts, verifies, and mitigates safety risks in real time.
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4.5. Application Case 2: Eco-Driving

The digital twin platform facilitates eco-driving strategies aimed at reducing fuel
consumption and emissions by optimizing vehicle speed and acceleration patterns in real-
world traffic conditions. Eco-driving can be implemented in two primary ways: driver
advisory systems, which provide real-time speed recommendations to human drivers, and
direct vehicle control, where CAVs autonomously adjust their trajectories for maximum
energy efficiency.

The fuel benefit of any eco-driving strategy depends on the surrounding traffic. A
preceding vehicle constrains safe headway, and the ego CAV’s motion propagates to the
following vehicles. A rigorous evaluation must, therefore, include the full micro-platoon,
not a lone test car. A DT solves the scale problem. Other vehicles run in the simulation,
where their states are updated at each step. The simulated states stream to the industrial
PC onboard the real CAV that drives on the test track. The onboard planner uses those
states to generate an energy-optimal trajectory, executes it, and returns the ego vehicle’s
measured position to the simulation, which then advances every surrounding vehicle to
the next step. In this experiment, the CAV trajectory is generated using a Physics-Enhanced
Residual Learning (PERL) predictive model [40]. The PERL model combines a physically
interpretable shockwave-based car-following model with a data-driven residual learner
based on a convolutional LSTM (CLSTM). Given the historical states of upstream vehicles,
it predicts the future acceleration of preceding vehicle K over a time window, t ∈ T f, as:

âPERL =
[

âPhy
Kt + r̂RL

Kt

]
∀t∈T f

(9)

where âPhy
Kt is the predicted future acceleration computed by Newell’s model, and r̂RL

Kt is the
predicted acceleration residual by the CLSTM model.

Then, the predicted behavior of the preceding vehicle is combined with a model-predictive
controller (MPC) to optimize the CAV control sequence, {uk}N−1

k=0 , over horizon N:

min
{uk}N−1

k=0

J = ∑N−1
k=0 (α1∆d + α2∆v + α3Fuel(vk, ak)) (10)

where Fuel(·) is the VT-Micro instantaneous consumption map. Positive weights. α1, α2, α3,
balance distance-keeping, smoothness, and economy.

This model is validated in the Vehicle-in-the-Loop (ViL) architecture for eco-driving
testing, as shown in Figure 11. Six twenty-second trips covering acceleration, cruising, and
deceleration were run. The VT-Micro model measured fuel use. Table 1 lists the results.
Average consumption fell by about 3.4% relative to an uncontrolled human-driven baseline
while keeping Time-to-Collision above three seconds and damping speed oscillations, as
shown in Table 2. The experiment confirms that the DT, coupled with PERL prediction, can
deliver verifiable fuel savings in a mixed virtual–physical traffic scene.

Table 2. Fuel-consumption comparison between human-driver baseline and PERL-MPC eco-driving
(unit: L · 100 km−1, VT-Micro estimate).

Vehicle 0 Vehicle 1 Average of Two Vehicles
Baseline Proposed Baseline Proposed Baseline Proposed

Fuel consumption
(L/100 km) 6.98 6.724 7.473 7.285 7.227 6.985

Decrease (%) −3.7% −3.1% −3.4%
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5. Conclusions and Future Challenges
This study presents a data-driven DT system that merges heterogeneous traffic data with

AI analytics to extend conventional ATMSs. The DT provides real-time situational awareness,
forecasts traffic states, and closes the loop with control-oriented applications—illustrated by inci-
dent response, crash-risk prediction, and energy-optimal eco-driving. A prototype on Madison’s
Flex Lane confirms the framework’s practicality and its ability to carry simulation insights into
field operations. Because it can virtually test new regulations, tolls, and infrastructure upgrades,
the DT also serves as a low-risk sandbox for policy evaluation. The validated eco-driving
module demonstrates how predictive DT analytics can be translated into real-world energy
savings, bridging simulation with deployment and supporting sustainable mobility policies.

Despite these advancements, several key challenges remain. One major challenge is
the integration of AI into DT systems. Generative AI holds the potential for simulating
alternative traffic scenarios and assisting decision-making, but ensuring robustness, inter-
pretability, and generalization remains difficult. AI-driven models must also be validated
against real-world constraints. Cybersecurity risks are another critical concern, as real-time
data exchange makes DT systems vulnerable to cyber threats and data breaches. Protecting
AI models, securing data transmission, and implementing privacy-preserving measures
will be essential for large-scale deployment.

Another challenge lies in the computational infrastructure required for real-time DT opera-
tions. The increasing complexity of these systems demands a distributed edge–cloud architecture
that balances real-time computation at the edge (e.g., roadside units, connected vehicles) with
large-scale simulations in the cloud. The efficient allocation of computational resources is necessary
to ensure low latency, scalability, and robust real-time response capabilities.

Closing the sim-to-real gap is another critical issue. Reducing the residual error
between simulated and real-world traffic behaviors is crucial for ensuring that management
strategies derived in the digital environment can be effectively applied in practice. Future
work should focus on quantifying and minimizing deviations between simulated and
actual traffic flow dynamics, using continuous real-world validation to refine DT models.

Lastly, standardization and interoperability remain major barriers to widespread adop-
tion. DT systems rely on integrating data from multiple sources, but without standardized
data exchange protocols, interoperability between different platforms is limited. Estab-
lishing common data formats, communication standards, and APIs will enable seamless
integration with existing traffic management infrastructures. Future DT implementa-
tions should be designed with cross-platform compatibility in mind, allowing for broader
collaboration among stakeholders and facilitating the growth of sustainable, intelligent
transportation initiatives.
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