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Abstract—Vision-based map-matching with HD map for high
precision vehicle localization has gained great attention for
its low-cost and ease of deployment. However, its localization
performance is still unsatisfactory in accuracy and robustness
in numerous real applications due to the sparsity and noise of
the perceived HD map landmarks. This article proposes the
tightly-coupled monocular map-matching localization algorithm
(TM3Loc) for monocular-based vehicle localization. TM3Loc in-
troduces semantic chamfer matching (SCM) to model monocular
map-matching problem and combines visual features with SCM
in a tightly-coupled manner. By applying the sliding window-
based optimization technique, the historical visual features and
HD map constraints are also introduced, such that the vehicle
poses are estimated with an abundance of visual features and
multi-frame HD map landmark features, rather than with single-
frame HD map observations in previous works [1][2][3]. Experi-
ments are conducted on large scale dataset of 15 km long in total.
The results show that TM3Loc is able to achieve high precision
localization performance using a low-cost monocular camera,
largely exceeding the performance of the previous state-of-the-
art methods, thereby promoting the development of autonomous
driving.

Index Terms—Vehicle localization, HD map, map-matching,
autonomous driving, intelligent vehicle.

I. INTRODUCTION

H IGH-precision and robust self-vehicle localization serves
as a prerequisite for navigation, decision making, and

control of autonomous vehicles. Existing high-precision local-
ization techniques based on differential RTK (D-RTK), such
as GNSS, can theoretically achieve centimeter-level localiza-
tion precision. However, in real applications such as urban
scenarios, a large localization deviation is often seen when
the surrounding buildings and trees block the GNSS signal,
making using the GNSS sensor alone becomes insufficient
[4][5]. As an alternative localization technique, map-based
localization has gained a lot of popularity for its role to serve
as a complementary localization method.

In recent years, since its first inception in late 2010, High-
Definition Maps (HD Maps) has gained tremendous popu-
larity in the intelligent vehicle industry, mainly because it
carries road elements with a much higher level of details
compared to the traditional navigation maps [6]. Several map
building companies have engaged in constructing their HD
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Fig. 1. The proposed TM3Loc algorithm that localizes a vehicle with
monocular camera in a pre-built HD map. The algorithm fuses the HD map
landmark features and the visual features to estimate the vehicle poses in a
tightly-coupled manner, which improves the system localization accuracy and
robustness.

map databases on a large scale with a series of production
and publication standards, such as Navigation Data Standard
(NDS) and Local Dynamic Map (LDM). The mainstream
approach to building HD Maps is through Mobile Mapping
System (MMS) equipped with high precision sensors including
LiDAR, RTK and IMU at centimeter-level precision. The
resultant map then consists of fine localization features that
can support intelligent vehicles’ positioning and trajectory
planning.

The localization feature in the HD map can be divided
into a) dense point cloud feature and b) sparse landmark
feature. The point cloud feature consists of the original point
cloud scanned by 3D LiDAR sensor [7], which maintains the
raw geometric information of the point cloud. State-of-the-
art map-based localization methods use point cloud HD map
to accurately estimate vehicle pose within a maximum error
of 0.2 m [8][9][10]. However, equipping intelligent vehicles
(IVs) with LiDAR sensors will significantly and undesirably
increase the overall sensor cost and the subsequent vehicle
production cost. Furthermore, the huge data size of the point
cloud map increases the difficulty in implementing the HD



map on IVs. Compared to the landmarks in the point cloud
map, the lightweight HD map landmark features are more
flexible and easy to use. The HD map landmarks consist
of static vectorized semantic landmarks (such as lane lines,
poles, and traffic signs), which are much more lightweight
than those in the original point cloud map. Matching the HD
map landmark features with the images from the low-cost
camera is an engineering- and commercial-friendly solution
for mass-produced vehicles. As a result, researchers have been
investing great efforts in matching these HD map landmarks
with features in the camera images. The basic idea behind
this approach is to detect semantic landmarks of HD map
in the camera image. The vehicle pose can then be obtained
by aligning the detected landmarks in the image with their
corresponding 3D landmarks in the HD map.

Pink et al. use aerial images to extract lane markings and
their respective positions to build a lane-level map, then match
the lane marking features in the image with this pre-built
map using the simple ICP algorithm [11]. The subsequent
works improve the map-matching localization by fusing other
sensors such as GNSS and IMU in an Extended Kalman Filter
(EKF) framework. Tao et al. proposed to use the EKF fusion
framework to integrate lost GPS, dead reckoning, and map-
matching features from vision lane markings [12]. The lane
markings detected by the video camera system provide the
lateral distance and heading angle information of a vehicle. Cai
et al. also use the map-matching observation as the additional
lateral distance observation in the filter-based fusion frame-
works [13]. These works were able to show that the vision-
based map matching approach for localization application
using pre-built lane level maps is viable and promising.

To make full use of the raw landmark features, research
works have deployed additional sensors like LiDAR or re-
placed the monocular camera with the multi-camera system
to restore the 3D information of the environment perception
[14][15]. In [16][17][18], the stereo camera systems are uti-
lized to restore the lane markings in 3D space. The stereo
images can help calculate the road surface equation by v-
disparity [19]; then, the detected lane markings are projected
onto that 3D road surface and aligned with the HD map Ma
et al. obtain the depth of the 2D detection of lane boundaries
and traffic signs through the LiDAR sensor and perform map-
matching on the bird’s-eye view space constructed by LiDAR
scans [20]. Although stereo camera systems or LiDAR can
help obtain the 3D information of the detected landmarks, the
additional cost of LiDAR and the reliability issue of the stereo
camera calibration [21] are the shortcomings of these methods.

In monocular camera settings, due to the depth ambiguity
of the monocular camera, projecting the detected landmarks
into the 3D space is proven challenging. The common strategy
is to assume that the road is flat and transform the detected
lane marking features into the bird’s-eye view using inverse
projection mapping (IPM) [22][23][24]. This method might
suffer significant distortion due to the vibration on pitch angle
of camera with respect to the ground plane [25]. Some research
works investigate the feasibility of performing map-matching
on the 2D image space [2][26]. The main challenge is that
due to the perspective effect of the camera, the detected 2D

landmarks, especially the lane boundaries, can vary drastically
in shapes, leading to increased complexity in the parame-
terization process. In [2][26], the detected lane boundaries
are simplified to be straight lines and a point-to-line cost
model between HD map landmark detection and projection
in the image plane is utilized to solve for the 6-DoF camera
pose. Some researchers introduces a neural network to directly
predict the 3D layouts of the lane marking from a single
image frame [27][28]. Liao et al. only utilize the pole-like
landmark features in the image with the assumption that they
remain as straight lines in the image plane [29]. With the
collection of the simplified model of landmarks, these works
can realize monocular map-matching and achieve reasonable
performances for vehicle localization.

Firstly, the assumptions of straight lines or flat plane of lane
boundaries are not always held true in real applications. As a
result, the simplified model of lane boundaries essentially turns
into the source of the systematic localization error. The second
factor, which is also the vital problem of these vision-based
map-matching techniques, is the significant lack of localization
constraints due to the sparsity of HD map landmarks in
realistic scenarios. Compared to the hundreds of thousands of
dense geometric features of point cloud map, the localization
clues provided by HD map landmarks are far less. The detected
landmarks cannot provide complete localization constraints to
solve for the vehicle poses in some cases entirely. Additionally,
the detection of landmarks in the image is affected by the
detection algorithm and suffer more severe noise interference
during image acquisition. The sparsity of HD map landmark
observations fundamentally restricted the number of available
constraints to reduce the impact of the observation noise
and false association, thus resulting in the deterioration of
localization accuracy [30]. Recent works also tried to utilize
the more general semantic deep learning-based feature instead
of HD map landmarks, such as PoseNet [31], DeLS-3D [32],
HFNet [33] and DA4AD [34]. These methods demonstrated
the feasibility of localizing using deep learning. However, most
of these methods can only reach a meter level of localization
accuracy for outdoor localization setup, and the result can not
be guaranteed due to the generalization issue.

To solve these problems, we propose TM3Loc, a novel
localization algorithm for improving the performance of the
monocular map-matching process. First, to deal with the
map-matching problem in the image plane, we adopt the
semantic chamfer matching (SCM) algorithm, inspired by the
traditional image alignment method, chamfer matching. In
chamfer matching, the distance transform is used to model
point-to-edge alignment. Lu et al. [1] first applied this method
in single frame map-matching of lane boundaries, and Pauls et
al. expanded on it to align with semantic segmentation results
such as poles and traffic signs [3]. Similar techniques have
also been used in online LiDAR-camera calibration [35][36].
In TM3Loc, we used SCM as a general cost model to match
different landmarks. However, instead of optimizing the cost
model using global search [35] or automatic derivatives [3],
we derived an analytical derivation of chamfer matching cost
with respect to the 6-DoF pose on se(3) to ensure efficient
optimization. Besides, to tackle the inevitable noise of HD



map landmark feature detection, an effective outlier rejection
strategy is also proposed. With the improved SCM implemen-
tation, the monocular map-matching problem can be efficiently
and robustly solved in a unified form with various landmark
shapes, thereby avoiding the inaccuracy brought by any prior
assumption of the target shapes.

Secondly, to deal with the sparsity of HD map landmark
features, we introduce the visual features from monocular
images in the map-matching process. With the development of
visual odometry [37][38] and visual SLAM [39][40][41][42],
the visual features are shown to be able to serve as accurate
localization constraints for relative pose estimation. As a
result, they can be considered as complementary localiza-
tion information in conjunction with the HD map landmark
features. Previous works related to this strategy [43][44]
combined these two pieces of information in a loosely coupled
manner - i.e., the map-matching-based and the visual feature-
based localization results are calculated separately first, and
then fused by Kalman Filter or sliding window-based state
estimator. However, these loosely-coupled strategies share a
common shortcoming: they all require the HD map landmarks
to be minimally self-sufficient for solving for the vehicle
poses. Nevertheless, in a real application, this requirement
clearly cannot always be satisfied.

In contrast with the previous works, we introduce a tightly-
coupled sliding window-based optimization strategy to fuse
the map-matching and visual feature localization constraints.
Similar idea is also utilized in our previous work [26]. The
basic concept is to optimize the poses with the minimization
target consisting of both visual landmark feature residuals and
HD map landmark feature residuals in a certain length of past
frames. As a result, the localization estimator can provide the
global pose of the current frame even when the current HD
map observations are insufficient. Moreover, with the aid of
the more abundant and accurate constraints of visual feature
landmarks, the system can be more robust against the HD
map observation noise and offer a more accurate localization
result. However, the calculation of SCM for multi-frames
in the tightly-coupled sliding window-based optimization is
generally time-consuming, making it challenging to meet the
real-time performance. As a further improvement of tightly-
coupled strategy in [26], a linearization approximation algo-
rithm that simplifies the SCM residual is also proposed to ac-
celerate the overall optimization process. With this algorithm,
the tightly-coupled sliding window-based optimization can be
solved in real-time with a negligible performance drop. The
contributions of this article are summarized as follows:

1) We adopted the semantic chamfer matching (SCM) as
the monocular map matching model and derived its
analytical derivatives with respect to the 6-DoF camera
pose. Also, an outlier association rejection strategy is
proposed, thereby allowing both efficient and robust
map-matching optimization.

2) A tightly-coupled sliding window-based optimization
algorithm to fuse visual feature and HD map land-
mark features is proposed. Moreover, a linearization
approximation algorithm is proposed to accelerate the
calculation of SCM during the optimization to ensure

the real-time performance of the whole system.
3) A large scale dataset with HD map landmarks on KAIST

Urban Dataset and Shougang Park is built for evaluating
the map matching localization algorithms. Experiments
are conducted on the proposed dataset, and the results
have demonstrated the robustness and high precision of
our self-localization algorithm.

II. METHOD

A. Problem Formulation

We start by considering the on-board camera pose as the
equivalent vehicle pose for this study, as the camera is fixed
to the vehicle. As such, the 6-DoF pose of camera frame Ct at
time t in global frame G is defined as GxCt =

{GtCt ,
GRCt

}
,

where GtCt
∈ R3 represents the translation vector from the

origin of G to the origin of Ct, and GRCt
∈ SO(3) represents

the 3 × 3 rotation matrix from frame G to frame Ct. The
problem of vehicle localization can be defined as the camera
pose GxCt estimation relative to the HD map, given the
monocular image with HD map landmark observations up to
time t.

B. HD map Landmark

The HD map landmarks are composed of various road
elements represented in vectorized format. This study utilizes
the lane boundaries and poles for localization because these
elements provide the basic localization cues and are common-
place in structured road scenarios. The HD map is denoted as
M = {Mi}. Each landmarkMi with its semantic category si
is modeled as a series of control 3D points {mi,j ∈ R3}j=1:Ni

sampled uniformly in the 3D space for a unified representation,
with Ni as the total number of control points of landmarkMi.

As for the HD map landmark observations in the im-
age plane, thanks to the development of the deep learning
technique, it is now feasible to efficiently extract semantic
objects using semantic segmentation [45][46] or panoptic
segmentation [47], including lane detection [48][49]. In this
study, we design a network based on FCN [45] to detect lane
boundaries and poles. However, in real-world applications, the
observations of HD map landmarks (e.g., the lane boundaries)
are of great variety in shapes when observed from the images.
Although the existing polylines representation can model these
lane curve observations in most of the structured highway
scenarios, it cannot accurately fit the corners and sharp curves
in common urban areas. In addition, the complicated lane
curve model makes the problem difficult to solve. Thus, this
study adopts the semantic segmentation of lane lines and poles
as the observation since it provides a straightforward approach
to precisely describe the diverse shapes of HD map landmarks.

C. Semantic Chamfer Matching

We start by formulating the map matching problem in a sin-
gle frame HD map observation. Given the initial camera pose
GxCt

, the 3D vector HD map landmarks points mi,j ∈Mi can
be projected into the image space. The map-matching problem
is to find an optimal camera pose Gx∗

Ct
which can minimize



Fig. 2. Corresponding observation searching results in map-matching. The
result of the nearest search is shown on the left, and that of the SCM method
on the right. In the distance image of SCM, the darker pixel indicates the
smaller distance value. The distance from each pixel to its nearest detection
pixel can be directly queried in the distance image.

the cost model d between the projected HD map landmark
points and their corresponding observations, as formulated in
(1):

Gx∗
Ct

= argmin
GxCt

∑
Mi∈M

Ni∑
j=1

d
(
zmi,j

,mIt
i,j

)
(1)

where zmi,j
is the observation of landmark point mi,j in the

image It, and mIt
i,j represent the 2D projection result of mi,j

given the camera pose GxCt
, i.e.:

mIt
i,j = π

(
mCt

i,j

)
= π

(
GRT

Ct

(
mi,j − GtCt

))
(2)

Suppose the images have been undistorted beforehand, we
adopt the pinhole model π(·) : R3 → R2 as the camera model:

π(

xy
z

) = 1

z

fx 0 cx
0 fy cy
0 0 1

xy
z

 =
1

z
K

xy
z

 (3)

where K is the intrinsic matrix.
However, finding zmi,j

in the semantic segmentation results
turns out to be non-trivial because of the ambiguity in the
matching process between the pixel-wise observations and
their corresponding HD map landmark features. A common
strategy is to associates each projected 3D landmark point to
the nearest pixels of the perceived landmark [17] as shown in
Fig. 2.

Given the segmentation result St of frame t, the cost model
of HD map control points mi,j with the detection result is
formulated as:

d(zmi,j
,mIt

i,j) = min
m′,St(m′)=si

∥∥∥m′ −mIt
i,j

∥∥∥ (4)

With this cost model, the camera pose GxCt can be solved
using an iterative optimization approach. However, for each
optimization iteration, the nearest pixel zmi,j

of each projected
HD map control point mIt

i,j should be re-calculated, thus
negatively impacting the efficiency if the naive exhaustive
searching is applied.

To solve this problem, SCM extends the chamfer matching
in [1] into a semantic version to efficiently calculate the
cost model d(·, ·) of each mIt

i,j with its associated segmented

pixel zmi,j
. The algorithm first generates the distance images

{Ds
t , s ∈ S} for each kind of HD map landmarks from the

image segmentation result St, with S as the set of semantic
categories of all kinds of HD map landmark features. In this
work, S = {LaneBoundary,Pole}. The distance image is
formed by augmenting each pixel with its distance to the
nearest non-zero pixel. Thus it is essentially a lookup table
for querying the nearest distance for all pixels in the image
space.

Given a set of projected HD map control points mIt
i,j =

(u, v) with type si, the nearest distance can be approximated
by bi-linear interpolation in Dsi

t as shown in (5):

min
m′,St(m′)=si

∥∥∥m′ −mIt
i,j

∥∥∥ = Dsi
t (mIt

i,j)

=

[
1− δv
δv

]T [
Dsi

t (ū, v̄) Dsi
t (ū+ 1, v̄)

Dsi
t (ū, v̄ + 1) Dsi

t (ū+ 1, v̄ + 1)

] [
1− δu
δu

]
(5)

where ū = ⌊u⌋ and δu = u − ū and the same for v̄ and
δv. Dsi

t (·, ·) represents the corresponding pixel value in Dsi
t .

During the process of solving the map-matching problem,
since the distance map is calculated beforehand, the nearest
search at each optimization iteration for each mIt

i,j can be
calculated as the pixel value query with O(1) computation
complexity, which is significantly more efficient than the naive
exhaustive search method. In our implementation, we first
separate the segmentation result St into {Ss

t} with different
semantic categories, and the distance images {Ds

t} are sub-
sequently computed by the efficient two-pass algorithm [50]
using the L2 norm with the input of {Ss

t} respectively.
To tackle the noisy image perception, instead of solely using

robust loss function in [3], a gating operation is applied as the
outlier rejection strategy to the distance image Ds

t , i.e.:

D̂s
t (u, v) =

{
Ds

t (u, v) Ds
t (u, v) < T

T Ds
t (u, v) ≥ T

(6)

where T is the gating threshold. In our implementation, T
is set as 20. By using this strategy, the value of areas with
distance larger than T will be constant and has zero gradient.
As a result, the projected HD map points lying within these
areas will not be counted in the optimization.

D. Tightly-coupled Map-Matching

In this section, we introduce the tightly-coupled slid-
ing window-based optimization strategy that fuses the map-
matching process with visual features in TM3Loc. The slid-
ing window-based optimization optimizes the current camera
pose together with a batch of historical camera poses in a
certain window size [51] and has been successfully applied in
popular SLAM systems [38][52]. The optimization window
slides forward with time, with each additional new frame
marginalizing the oldest frame in a first-in, first-out fashion
(FIFO). The marginalization operation converts the original
constraints of marginalizing frames into prior information for
the states in the sliding window. The full state vector in
the sliding window, denote as X , is the length of K. Since
visual feature landmarks only provide constraints in the local



coordinate, the full state vector is composed of K camera
pose states C0xC =

{C0xCk

}
k=1:K

in the first camera frame
C0. As the final output of camera pose is in the global frame
G, a global to local 6-DoF transformation state GxC0

is also
defined in X . The states of visual feature landmarks appearing
in the sliding window are also included in the inverse depth
form. λi is the inverse depth of visual feature landmark ci
related to the frame with its first observation. It is important
to note that the states of HD map landmarks are not estimated
since their prior information is sufficiently accurate. The full
state vector X is defined as:

X =
[
C0xC1

, · · · , C0xCK
, GxC0

, λ1, λ2, · · · , λM

]
C0xCk

=
[
C0tCk

, C0RCk

]
, n ∈ [1,K]

GxC0
=
[
GtC0

, GRC0

]
λm ∈ R,m ∈ [1,M ]

(7)

The kth global camera pose in the sliding window GxCk
can

be calculated as:[
GRCk

GtCk

0 1

]
=

[
GRC0

GtC0

0 1

][
C0RCk

C0tCk

0 1

]
(8)

The system is to find the optimal state vector X by mini-
mizes the Mahalanobis distance of all measurement residuals
r(X ) in the sliding window:

X ∗ =argmin
X

∥∥r(X )∥∥2
Ω
=

argmin
X

∥∥rp −HpX
∥∥2 + ∑

ci∈C
ρ

(∥∥∥rC(zkci
,X )

∥∥∥
ΩC

)

+
∑

Mi∈M′

Ni∑
j=1

ρ

(∥∥∥∥rM (
zkmi,j

,X
)∥∥∥∥

ΩM

)
(9)

where rC
(
zkci

,X
)

is the visual landmark residual and
rM(zkmi

,X ) is the HD map landmark residual. C and M′

are the sets of 3D visual landmarks and HD map landmarks
observed in the sliding window. {rp,Hp} is the prior informa-
tion derived from marginalization during the sliding window-
based optimization. ρ(·) is the Huber loss function, a robustify
function that makes system robust to outlier noise, as defined
in (10):

ρ(a) =

{
a2, |a| ≤ δ

2|a|δ − δ2, |a| > δ
(10)

with δ as the parameter that can be adjusted for different
levels of outlier suppression strength. To optimize the (9), the
Levenberg-Marquardt (LM) algorithm is utilized:

(JTJ+ λI)∆x = −JT r (11)

where J is the jacobian matrix of r(X ) w.r.t. the state vector
X . The algorithm iteratively solves for the ∆x, and X is
updated from k step to k + 1 step as follows:

Xk+1 ← Xk ⊕∆x (12)

The whole framework of the proposed tightly-coupled opti-
mization is visualized in Fig. 3.

Fig. 3. The framework of the proposed tightly-coupled optimization in
TM3Loc. During the optimization, the absolute pose of the current input
image is estimated by all the HD map landmark constraints (represented in
frame G) together with all visual feature constraints (represented in frame C0)
in the sliding window.

Visual landmark residual. The underlying concept of
visual landmark residual is finding the image points from dif-
ferent frames corresponding to a common 3D visual landmark
point to restrain poses in these frames. In our implementa-
tion, the visual feature points are detected using Shi-Tomasi
algorithm [53], and tracked using the optical flow [54]. The
inverse depth model is adopted to describe the 3D visual
landmarks. The observation of visual landmarks is defined in
the normalized image plane, which is obtained by applying the
inverse camera projection π−1 to ”lift” the pixels of observed
visual landmarks in the image plane to the camera coordinate
with the depth of 1. Considering the visual landmark ci firstly
observed in frame Ck0

, the residual of its observation in frame
Ck can be defined as:

pC0
ci

= C0RCk0

1

λi
zk0
ci

+ C0tCk0

pCk
ci

= C0RT
Ck

(
pC0
ci
− C0tCk

)
rC

(
zkci

,X
)
= π(zkci

)− π
(
pCk
ci

) (13)

where zkci
and zk0

ci
represent the normalized observations of

visual feature ci in frame Ck and Ck0
. The Jacobian matrices

Jci
(C0xCk

) and Jci
(C0xCk0

) of rci

(
zkci

,X
)

w.r.t. the camera
pose C0xCk

and C0xCk0
are derived on their se(3) Lie Algebra

manifold. With z denoting the depth of pCk
ci

, then

∂π
(
pCk
ci

)
∂pCk

ci

=

[
fx
z 0 − fx

z2

0
fy
z − fy

z2

]
(14)

Jci
(C0xCk

) =
∂π
(
pCk
ci

)
∂pCk

ci

[
C0RT

Ck
−
[
C0RT

Ck
pC0
ci

]
×

]
(15)

Jci
(C0xCk

) =
∂π
(
pCk
ci

)
∂pCk

ci

[
−C0RT

Ck

C0RT
Ck

C0RCk0

[
1
λi
zk0
ci

]
×

]
(16)



where [·]× denotes the skew-symmetric matrix transformation.
The Jacobian matrix Jci(λi) w.r.t the inverse depth λi is:

Jci(λi) =
∂π
(
pCk
ci

)
∂pCk

ci

C0RT
Ck

C0RCk0

1

λ2
i

(17)

HD map landmark residual. The HD map landmark
residual is constructed using the SCM as outlined in Sec. II-C.
First, the sampled control points of the HD map landmarks
are transformed from the global coordinate G into the local
coordinate C0 by GxC0

, and then projected into the image plane
with local camera pose C0xCk

. For a sample point mi,j of HD
map landmark Mi, given its corresponding observation zkmi,j

in frame Ck, the residual is defined as:

mC0
i,j =

GRT
C0

(
mi,j − GtC0

)
mCk

i,j =
C0RT

Ck

(
mC0

i,j −
C0tCk

)
rM

(
zkmi,j

,X
)
= d

(
zkmi,j

, π
(
mCk

i,j

)) (18)

The jacobian matrix Jmi,j
(C0xCk

) and Jmi,j
(GxC0

) w.r.t
C0xCk

and GxC0
are:

Jmi,j (
C0xCk

) =
∂Dsi

k

∂mIk
i,j

∂mIk
i,j

∂mCk
i,j

[
−C0RT

Ck

[
mCk

i,j

]
×

]
(19)

Jmi,j
(GxC0

) =
∂Dsi

k

∂mIk
i,j

∂mIk
i,j

∂mCk
i,j

[
−C0RT

Ck

GRT
C0

C0RCk

[
mC0

i,j

]
×

]
(20)

where

∂mIk
i,j

∂mCk
i,j

=

[
fx
z 0 − fx

z2

0
fy
z − fy

z2

]
, mCk

i,j =

xy
z

 (21)

and ∂D
si
k

∂m
Ik
i,j

is approximated as the pixel gradient of Dsi
k at

mIk
i,j , i.e.:

∂Dsi
k

∂mIk
i,j

=
1

2

[
Dsi

k (ū+ 1, v̄)−Dsi
k (ū− 1, v̄)

Dsi
k (ū, v̄ + 1)−Dsi

k (ū, v̄ − 1)

]T
(22)

In our implementation, the number of sample points of HD
map landmark features is around 150 for single frame. As a
result, when performing the LM optimization, the HD map
landmark residuals and jacobians needs around 150K times
calculation for each LM optimization update step, making
naive SCM not suitable for tightly-coupled sliding window-
based optimization.

Linear approximated residual. Next, we introduce the
linearization approximation algorithm for accelerating the HD
map residual calculation of SCM. Given the set Mk of
all sample points of HD map landmarks at frame k, when
applying LM optimization algorithm in (11), the corresponding
block of HD map residuals is:

(HMk + λI)

[
∆C0xCk

∆GxC0

]
= −bMk (23)

where HMk and bMk are calculated as:

HMk =
∑

mi∈Mk

[
Jmi

(C0xCk
)

Jmi
(GxC0

)

]T [
Jmi

(C0xCk
)

Jmi
(GxC0

)

]

bMk =
∑

mi∈Mk

[
Jmi

(C0xCk
)

Jmi(
GxC0)

]T
rmi

(24)

Since HMk is a symmetric matrix, one can perform Cholesky
decomposition as HMk = JT

MkJMk . By further introducing
rMk = (J†

Mk)
TbMk , (23) can be transformed as:

JT
MkJMk

[
∆C0xCk

∆GxC0

]
= −JT

MkrMk
(25)

This transformation indicates that the overall HD map resid-
uals at frame k are equivalent to one single residual block r
satisfying:

r(C0xCk
,GxC0

) = rMk

∂r(C0xCk
,GxC0)

∂
[
∆C0xCk

,∆GxC0

] = JMk
(26)

Normally, JMk is relative to C0xCk
and GxC0

. As a result,
it should be re-calculated after each round of updates in the
LM optimization. However, if C0xCk

and GxC0
have been

optimized several times in the previous sliding window-based
optimizations, we can assume that they are already close to
the local optimum and therefore will change only a little after
each round of update. Under this assumption, the proposed
algorithm is to replace JMk by a constant jacobian J̄Mk that
is jacobian of the HD map residuals at the initial value (C0 x̄Ck

,
Gx̄C0) before optimization, deriving the linear approximated
residual rLA as:

rLA(z
k,X ) = rMk − J̄Mk

[
C0 x̄Ck
Gx̄C0

]
+ J̄Mk

[
C0xCk
GxC0

]

:= r̄LA + J̄Mk

[
C0xCk
GxC0

] (27)

This approximation avoids the jacobian re-calculation of HD
map residuals at each LM optimization round, accelerating
the overall state estimation. Notice that the approximation
can only be reasonable when the states at frame k are lying
within the neighborhood of local optimum. To ensure the
approximation is not applied on frames that have not been well
solved, the algorithm introduces a variable nk for each frame
k to record the lifetime of frame k in the sliding window.
Only frames with nk larger than a threshold NT will be
approximated.

In the sliding window-based optimization, the K camera
poses from the past frames are selected as keyframes. The
keyframe selection strategy has been widely studied in the
visual SLAM community. In our implementation strategy, the
latest frame is added as a new keyframe when it has enough
visual parallax with the second latest keyframe in the sliding
window, leading to the removal of the oldest keyframe in the
sliding window; otherwise, the second latest keyframe will
be discarded. With this strategy, the feature landmarks in the



sliding window can be observed by the keyframes with enough
parallax so that their 3D positions can be estimated more
accurately.

In the cost model (4) of SCM, the data association result is
strongly related to the initial guess of the state poses. Thus,
in order to reduce the false data association in SCM, a good
initial guess of the camera pose is required. Therefore, in our
implementation, we have proposed the initial guess generation
strategy with the aid of visual features. The strategy predicts
the initial guess with the current frame observations of the
visual feature landmarks, of which their 3D positions have
already been estimated in the sliding window process. The
results of this prediction serve as the initial guess for the SCM,
thereby helping improve the accuracy in generating the final
data association for optimization. The whole tightly-coupled
sliding window-based map matching pipeline is outlined in
Algorithm 1.

Algorithm 1 Tightly-coupled Map Matching
Input:

The HD map landmark feature set M = {Mi}i=1:N ;
The segmentation result St = {Ss

t , s ∈ S} of image;
The tracked visual feature {ci ∈ C};
The initial state X ;

Output:
Optimized pose GxCt ;

1: Calculate the initial guess C0 x̂Ct
of C0xCt

∈ X using visual
features.

2: Dt ← DistanceTransform(St).
3: Construct rLA

(
zk,X

)
for frames with nk > NT .

4: while Not Converge do
5: for each keyframe Ck in the sliding window do
6: Construct rci

(
zkci
X
)

for ci ∈ C.
7: Construct rmi,j

(
zkmi,j

,X
)

for mi,j ∈ Mi for
frames with nk ≤ NT .

8: Calculate the jacobian matrix J of r w.r.t. X .
9: Calculate ∆x using LM optimization.

10: X ← X ⊕∆x.
11: end for
12: end while
13: GxCt

← GxC0
· C0xCt

;

E. System Initialization

At the beginning of the optimization (9), a good initial
value of the full state vector X is required due to the high
non-linearity of the problem. Hence, a novel initialization
algorithm is presented here to solve the initial guess of X .
The proposed algorithm first solves the Structure-from-Motion
(SfM) problem given a sequence of K images to obtain the
local camera poses and the inverse depth of visual feature
landmarks. Although the estimation of poses and the feature
point landmarks from SfM is pretty accurate, due to the depth
ambiguity of the monocular camera, this estimation cannot
be used as the initial guess directly since its scale is not
observable. Moreover, the global-to-local transformation GxC0

still remains unknown. To this end, we recover the scale of

Fig. 4. The pipeline of system initialization shown as three parts. First, the
visual-only SfM and the HD map-only localization are separately calculated.
Then, the alignment between these two trajectories are conducted to recover
the scale of poses and the visual features. Finally, the global-to-local trans-
formation GxC0

. is obtained.

the local camera pose C0xCk
and the inverse depth of visual

feature landmarks, and GxC0 by fusing the observation of the
HD map landmarks in a loosely coupled manner. The whole
initial pipeline is shown in Fig. 2, with three steps introduced
as follows:

Visual-only SfM. The monocular visual pose is calcu-
lated to determine the up-to-scale frame-to-frame motion, and
to obtain a robust visual-only pose result. Its initialization
strategy employs a simplified Structure-from-Motion (SfM)
process used in [52]. This step outputs the local camera pose
{C0 x̄Ck

}Kk=1 = {C0R̄Ck
, C0 t̄Ck

}Kk=1 with obscure scale.
HD map-only localization. To utilize the HD map ob-

servation to recover the scale s and GxC0 , we solve for the
global camera poses {GxCk

}Kk=1 = {GRCk
, GtCk

}Kk=1 from
the image sequence by the HD map observations. Firstly, the
initial camera pose is solved in the first frame, with the rough
initial guess of the camera pose obtained by GNSS. Due to the
noise in the GNSS signal, the initial guesses of camera pose is
sampled uniformly around the GNSS position at a radius of 5
m. The camera pose of each sampling position is solved by HD
map landmarks and their observations using the SCM method,
as formulated in (1). The calculated first camera pose will then
be used as the initial guess of the successive camera pose,
and the same minimization process is performed to obtain
a more accurate solution. The optimized cost serves as the
criteria to decide whether the current pose is well solved - if
the optimized cost is larger than a predefined threshold value,
the given camera pose solution will be rejected. It is important
to note that the localization is likely to fail in scenarios with
sparse HD map landmark observations. As a result, the system
should be initialized in the scenarios with plenty of HD map
landmarks for reliable initialization results.

Trajectory fusion. After obtaining both the local camera
pose from the visual-only SfM and the global camera pose
from the HD map-only localization, the scale s and transfor-
mation GxC0

can be solved.

GRCk
= GRC0

C0R̄Ck
(28)

GtCk
= sGRC0

C0 t̄Ck
+ GtC0 (29)

Equation (28) can be solved by converting the rotation matrix
into quaternion format, i.e.

GqCk
= GqC0 ⊗ C0 q̄Ck

= ⌊C0 q̄Ck
⌋R

GqC0
:= C0Q̄Ck

GqC0

(30)



where ⌊·⌋R denote the right multiplication matrix of C0 q̄Ck
.

Given K rotation equation of (30) at different timestamps,
GRC0 can be solved as follows:

GqC1

...
GqCK

 =


C0Q̄C1

...
C0Q̄CK

 GqC0
(31)

After solving the rotation GRC0 , the translation GtC0 and scale
s can be recovered by solving the following equation:

I GRC0
C0 t̄C1

...
...

I GRC0
C0 t̄CK


[
GtC0

s

]
=


GtC1

...
GtCK

 (32)

Note that only the valid HD map-only localization results are
used, and at least two valid localization results are required
(K ≥ 2) to arrive at a unique solution.

After solving s and GxC0 , the translation of the local camera
pose C0tCk

and the vision feature landmarks with real scale
can be obtained:

C0tCk
= sC0 t̄Ck

λi = s−1λ̄i

(33)

The rotation matrix C0RCk
is kept as the result C0R̄Ck

from
visual-only SfM, since we believe that the pose estimation of
visual-only SfM is more accurate than that of the HD map-
only localization result for the more abundant visual features
offered by the visual-only SfM. The whole initialization algo-
rithm is shown in Algorithm 2.

Algorithm 2 Loosely-coupled Initialization Algorithm
Input:

The set of observations of visual feature point C at each
frame {zkci

}Kk=1, ci ∈ C;
The set of observations of HD map landmarkM′ of each
frame {zkmi,j

}Kk=1,mi,j ∈Mi,Mi ∈M′;
Output:

The state vector X for system initialization.
1: Calculate the visual-only SfM poses {C0 x̄Ck

}Kk=1 with
feature point observation set {zkci

}Kk=1.
2: Calculate the HD map-only poses {GxCk

}Kk=1 with HD
map landmark observation set {zkmi,j

}Kk=1.
3: Solving the GxC0

and scale s with (28) and (29).
4: C0RCk

← C0R̄Ck
, C0tCk

← s ¯C0tCk
, λi ← s−1λ̄i

5: C0xCk
← {C0RCk

, C0tCk
}

6: X ←
[C0xC1 , · · · , C0xCK

, GxC0 , λ1, · · · , λM

]

III. EXPERIMENTAL RESULT

To evaluate the proposed algorithm, experiments are con-
ducted on large scale localization datasets with HD maps.
We first evaluate the localization accuracy of TM3Loc on
three sequences of a public available dataset, KAIST Urban
Dataset and compare it with existing visual(-inertial)-based
odometry and map-matching algorithms. Then, the effect of
tightly-coupled visual features and the outlier rejection in
SCM are examined. Moreover, the linearization approximation

TABLE I
KAIST URBAN DATASET WITH HD MAP.

Sequence Name Scenario Length #(Lane boundaries) #(Poles)
Urban 34 bridge 1.1 km 560 153
Urban 23 highway 3.4 km 679 169
Urban 26 urban 4.0 km 1569 402

algorithm is also been examined to demonstrate its ability of
balancing the localization performance and time cost. In the
end, the TM3Loc algorithm is tested on three self-recorded
sequences in Shougang Park to demonstrate the localization
ability of overall system in real applications.

A. Experimental Setup & Evaluation Metric

To quantitatively evaluate the localization performance, we
have examined the root mean square of Average Trajectory Er-
ror (ATE) and Average Rotation Error (ARE) of the estimated
trajectories with the reference trajectories. ATE and ARE are
calculated as:

eATE =

√√√√ 1

N

N∑
i=1

∥∥ti − tGT
i

∥∥2
eARE =

√√√√ 1

N

N∑
i=1

∥∥∥∥2 arccosRe
(
q−1

GT ⊗ qi

)∥∥∥∥2
(34)

The ATE and ARE are calculated in two kinds of error:
relative pose error (RPE) and absolute pose error (APE) with
frames at interval of 10 m, thereby evaluating both the local
trajectory smoothness and global localization accuracy. Also,
the localization error along the lateral, longitudinal and vertical
directions are provided separately. The reference trajectories
calculated by multi-sensor SLAM algorithm are provided by
the official KAIST urban dataset. The average localization
error is calculated as the average of error of all sequences
weighted by their frame numbers.

B. Localization Result on KAIST Urban Dataset

Since not public available HD maps provided, we manually
built HD maps based on the point cloud map of KAIST
Urban Dataset. In the dataset, the GNSS data are obtained
from high precision VRS-GPS at 1Hz, and the IMU data
are received at 100Hz. In addition, for each trajectory, a
point cloud map scanned by a set of 2D SICK LiDAR is
provided. We chose several classic scenarios in the KAIST
urban dataset, including highway, bridge, and urban road, and
manually labelled the lane boundaries and poles in the point
cloud map. Table I summarizes the detail of selected sequences
and their respective HD map information.

To better analyze the performance of the proposed lo-
calization algorithm, two visual-inertial odometry (VIO) al-
gorithms VINS-Mono [52], OpenVINS [55] were evaluated
for comparing the local trajectory smoothness since visual



TABLE II
LOCALIZATION RESULTS IN THE KAIST URBAN DATASET. FOR VIO, RPE OF ATE AND ARE ARE CALCULATED WHILE APE OF ATE AND ARE ARE

EVALUATED FOR MONOCULAR HD MAP-MATCHING ALGORITHMS. ATERPE , ATEAPE , LATERAL (∆x) AND LONGITUDINAL (∆y ) LOCALIZATION ERROR
ARE MEASURED IN METER (M). ARERPE , AREAPE ARE MEASURED IN DEGREE.

Method
Urban 34 Urban 23 Urban 26 Average

ATERPE ARERPE ATERPE ARERPE ATERPE ARERPE ATERPE ARERPE

VIO
VINS-Mono [52] 1.098 0.348 1.710 0.313 2.474 0.463 2.158 0.419
OpenVINS [55] 1.237 0.186 0.865 0.205 0.497 0.145 0.749 0.165
TM3Loc (Ours) 0.159 0.326 0.321 0.242 0.165 0.230 0.203 0.251

ATEAPE/∆x/∆y AREAPE ATEAPE/∆x/∆y AREAPE ATEAPE/∆x/∆y AREAPE ATEAPE/∆x/∆y AREAPE

Monocular
HD map
Matching

Pauls et al. [3] 0.384/0.024/0.383 0.175 0.452/0.054/0.445 0.782 0.208/0.058/0.189 0.306 0.302/0.053/0.291 0.425
HDMI-Loc [18] 0.228/0.081/0.202 1.379 0.454/0.090/0.435 1.325 0.372/0.158/0.287 1.385 0.369/0.136/0.309 1.373
Wen et al. [26] 0.177/0.072/0.149 0.565 0.558/0.054/0.555 0.517 0.280/0.053/0.269 0.575 0.337/0.056/0.328 0.562
TM3Loc (Ours) 0.158/0.045/0.145 0.455 0.330/0.048/0.323 0.608 0.170/0.047/0.157 0.481 0.208/0.047/0.198 0.504

odometry are involved in the proposed method. Also, state-
of-the-art HD map-matching localization algorithms Pauls et
al. [3], HDMI-Loc [18] and Wen et al. [26] were selected
for the comparison of global localization accuracy. In our
implementation, VINS-Mono used a monocular camera and
IMU data, while OpenVINS used the stereo camera and IMU
data. As for algorithm [3], we used IMU and GNSS data
to obtain the relative motion estimation instead of vehicle
odometry since the motion obtained from IMU and GNSS
can provide a completed 6-DoF ego-motion measurement. As
for HDMI-Loc, we adjusted the original method to use a
monocular camera instead of a stereo camera for the sake of
fairness of comparison with other monocular map-matching
algorithms. Therefore the subpatch images in HDMI-Loc were
generated by inverse projection mapping (IPM) with a fixed
homography matrix calculated from the extrinsic parameters
between the camera and vehicle coordinates. As for TM3Loc,
we set the keyframe length K as 10, the maximal feature point
number as 250 and the linear approximation threshold NT as
3. As for [26], while the keyframe length and feature point
number were the same as TM3Loc, since the HD map residuals
were modeled as point-to-line distance, the lane boundary
observations with large curvature were rejected.

The results first indicate that VIO systems can dramatically
drift during the long-term trajectory. This phenomenon com-
monly exists in visual(-inertial) odometry methods since the
accumulative pose error can not be corrected without global
pose observations. As for TM3Loc, the RPE error is much
smaller than traditional VIO method. This is because the HD
map landmark features can provide absolute pose constraints,
thereby correcting the scale of the localization result. With the
aid of HD map landmark features, the visual feature landmarks
estimated in TM3Loc can have a lower drift in scale, resulting
in a better local trajectory estimation. With regard to the
monocular HD map matching methods, the results show that
all methods provide a reasonable localization result, while the
proposed TM3Loc has demonstrated a 0.208 m localization
error in average, which exceeds other map-matching methods
by a large margin. Notice that [26] obtains a similar result in
Urban 34, a straight road scenario, compared to TM3Loc, but
fails to achieve high precision in the rest two sequences with
curve scenarios due to the limitation of point-to-line based

HD map residuals. The result demonstrates that the SCM HD
map residual model and optimization process of TM3Loc can
converge to a better map-matching result.

However, in urban 23, TM3Loc has a much larger longitudi-
nal error than other scenarios with the maximum localization
error at 1.56 m. This case happens in some extreme highway
scenarios where both the HD map landmarks and the visual
features are sparse and far away from the vehicle. In this
case, the visual features cannot accurately locate the vehicle,
especially in translation motion, thereby resulting in a limited
improvement for the vehicle localization. We believe this cor-
ner case can be resolved by fusing other sensors, such as IMUs
and odometers, into the TM3Loc localization framework.

In a nutshell, our localization system can provide an
accurate localization result using only the lightweight HD
map landmarks and the monocular camera and has clearly
outperformed other existing multi-sensor fusion algorithms,
especially when an abundance of visual features are present.

C. Effect of Visual Features

In this section, experiments are conducted to examine the
proposed method in two aspects to dive deeper into the effect
of our visual feature incorporation strategy. The first one is
the initial guess generation strategy. In the tightly-coupled
optimization, we used the visual features to solve for an
initial guess of the current frame before performing the whole
optimization (as described in Sec II.D.). The effect of this
strategy is examined and discussed. The second one is the
complementarity of visual features with HD map constraints.
Since the HD map constraints can be insufficient in some
cases (e.g. road intersections), solving the poses based solely
on the HD map becomes rather sub-optimal. In these cases,
both the visual feature and the HD map constraint can be
considered in the tightly-coupled optimization process, making
up for the deficiency of using only the HD map constraints.
The experiments are designed to evaluate the effectiveness of
this strategy.

1) Initial Guess. We compared the initial guess generation
strategy in TM3Loc with a baseline strategy that adopts the
constant velocity motion model to predict the initial guess of
the current frame. We tested different initial guess generation
strategies by evaluating the deviations among their respective



Fig. 5. The localization error of the HD map-only localization with initial
guesses provided by the constant velocity model strategy and the TM3Loc’s
strategy.

final optimized results in the experiment. The baseline method
implementation system will be reset as the original TM3Loc
result after each estimation round to eliminate the accumulated
error. A large error among the optimization results indicates
the poor performance of the initial guess strategy. The evalu-
ation of these two initial guess strategies is conducted on the
Urban 26 dataset. The system setting is same as experiments in
Sec. III-B. The localization error of both strategies is evaluated
and plotted in Fig. 5.

From the figure, a big localization error can be observed
from the baseline strategy. Although this strategy can provide
reasonable results in some frames, the constant velocity model
often fails to provide good initial guesses, particularly in urban
scenarios where the vehicle movement is more irregular and
hard to predict. As for the strategy in TM3Loc, the error
of initial guess is smaller, and the final estimation error is
much better than the baseline strategy. As indicated, the better
initial guesses provide better initial data association and help
SCM quickly converge to the optimal solution. In conclusion,
the effectiveness of the initial guess generation strategy in
TM3Loc is well demonstrated by the experiment results and
can further strengthen the optimization effectiveness in the
map-matching process.

2) Complementarity with HD map Constraints. The ex-
periments are conducted specifically on the scenarios with
insufficient HD map constraints to investigate the effect of
the tightly-coupled optimization with the visual feature and
HD map constraints. One of the common scenarios is the
road intersection cases, where only poles can be used as
the localization cues. We chose a video clip of 8s in length
from Urban 26 at a selected road intersection. Three kinds of
localization results are compared: HD map-only localization,
visual odometry, and TM3Loc. To better examine the effect
of the tightly-coupled optimization, we removed the negative
impact of the initial guesses in the HD map-only localization
using the same initial guesses for TM3Loc. As for the visual
odometry, we first initialized the system identically as in
TM3Loc to get the absolute poses and scales, discarded the
HD map constraints, and only estimated the poses by visual
features of the testing video clip. The localization error of the
three kinds of methods is summarized in Table. III.

The result first indicates a sizable deviation when localizing

TABLE III
LOCALIZATION ERROR OF HD MAP-ONLY, VISUAL ODOMETRY AND

TM3LOC LOCALIZATION METHODS, AND THEIR RESPECTIVE LATERAL,
LONGITUDINAL AND VERTICAL ERRORS.

Method ATE ∆x ∆y ∆z

HD map only 0.509 0.252 0.193 0.398
Visual odometry 0.228 0.021 0.223 0.039

TM3Loc 0.135 0.031 0.122 0.040

solely with HD map constraints, and such localization error is
mainly due to the insufficient and noisy HD map constraints.
For added clarity, the vertical localization error is also re-
ported, and the result demonstrates that the vertical error plays
an even larger role in localization error. The reason is that the
poles cannot be treated as a sufficient constraint in a vertical
direction, since the length of the detected poles and those of
the poles in the HD map can be misaligned due to the data
acquisition noises on both the detection results and those of the
HD map. This vertical misalignment is further exaggerated at
road intersections due to the lack of lane boundaries. As for the
visual odometry, the poses are estimated by the visual features.
The abundant visual feature constraints can ensure accurate
pose estimation initially but will gradually drift off due to its
natural characteristics. However, the localization error is much
lower than that of the HD map-only localization. In addition,
the results further indicate that the height error is no longer
the main source of localization error since the visual feature
points are distributed in diverse positions and altogether pro-
vide sufficient localization constraints in all directions. Lastly,
the tightly-coupled optimization result shows a much lower
localization error compared to the previous two methods.
The reason is that, with the aid of visual feature in tightly-
coupled optimization, the vertical constraints are effectively
compensated, thereby avoiding the drift caused by insufficient
HD map constraints and helping the system converge to
better localization results. The tightly-coupled optimization
uses visual features to eliminate the ill-posedness of HD map
constraints, in the beginning, to achieve a better sensor fusion
result effectively. On the contrary, the loosely-coupled opti-
mization solution, which essentially takes a weighted average
on the HD map-only and the visual odometry trajectories, has
been outperformed due to its inevitable failure to eliminate the
localization biases.

D. Effect of Outlier Rejection Strategy

An ablation study examines the effect of the outlier rejection
strategy applied in SCM by comparing the performance of
single frame map-matching results using SCM without and
with the proposed outlier rejection strategy. We evaluate the
map-matching with only SCM on Urban 34, Urban 23 and
Urban 26, and summarize the results in Table. IV. The initial
poses of SCM are set as the ground truth poses to remove
the negative impact of the initial poses. The SCM residuals
of every frame are optimized with an LM algorithm with a
maximum of 50 iterations. Fig. 6 visualizes several corner
case results by projecting the HD map landmarks on the



TABLE IV
ATE OF SCM WITH AND WITHOUT PROPOSED OUTLIER REJECTION
STRATEGY IN THREE SEQUENCES OF KAIST URBAN DATASET. THE

INITIAL GUESSES ARE SET AS GROUND TRUTH POSES.

Urban 34 Urban 23 Urban 26

SCM(without OR) 2.544 2.378 1.177
SCM(with OR) 0.193 0.355 0.312

(a) Error = 0.439 m (b) Error = 0.094 m

(c) Error = 3.211 m (d) Error = 0.205 m

(e) Error = 44.070 m (f) Error = 0.104 m

Fig. 6. Left: optimizing SCM residuals without outlier rejection strategy.
Right: optimizing SCM residuals with proposed outlier rejection strategy.
Position errors of estimated poses are reported. The poles and lane boundaries
for perception are colored as red and green, while as cyan and magenta for
HD map projection.

images using the estimated poses. The localization error of
each case is also reported. In these cases, some poles and lane
boundaries are not detected due to the hard visual condition,
such as daze light or the occlusion by vehicles. As a result,
the differences between HD map landmarks and perceived
landmarks cause false data association in SCM. When outlier
rejection is not applied, the outlier data association will lead
to a false convergence direction. However, after applying the
proposed outlier rejection strategy, these false data associations
can be filtered. Without the effect of wrong residuals, the pose
can be solved using the SCM residual model, as shown in the
right column of Fig. 6, which demonstrates the effectiveness
of the proposed outlier rejection strategy.

E. Effect of Linear Approximated Residuals

To examine how the introduced linear approximated residual
effects TM3Loc, we compare the system localization accuracy
and the time cost for HD map residual calculation during
optimization after applying linearization approximation with
NT varying from 3 to the sliding window size K. The system
is tested on sequence Urban 26 of KAIST Urban Dataset
with K = 10. The maximum optimization round of LM
optimization is set as 50. The average HD map residual
processing time and localization accuracy are visualized in
Fig. 7. As for comparison, we also calculate the computation

Fig. 7. Curves of localization accuracy (ATE) and computation time (ms) of
HD map residuals modeled as SCM and point-to-line [26] with different NT .

time of the HD map residual model used in [26], a point-to-line
distance model with much simpler computation complexity.

From the result, one can see that there is a great gap in
time efficiency between the original SCM and the point-to-
line model. After applying linearization approximation, the
time for calculating the HD map residuals keeps reducing
linearly as NT becomes smaller and much closer to the time
of the point-to-line model. This follows the expectation since
the number of HD map residual that needs calculation is
linearly relative to the number of frames applied with SCM
residuals. Also, the calculation of residual and jacobians of
linear approximated residuals is efficient, requiring only few
additional computation time cost. On the other hand, while
NT gets smaller, the localization accuracy only slightly de-
creases (ATE increases around 0.015 m when NT varies from
10 to 3), indicating that the linear approximation algorithm
can well approximate the original SCM HD map residuals,
without causing dramatic performance drop. This phenomenon
demonstrates the proposed linearization approximation method
can greatly reduce the calculation cost of HD map residuals,
make it possible to incorporate the HD map residuals into
tightly-coupled sliding window-based optimization. Compared
to the point-to-line model, with the help of linearization
approximation, SCM reaches a better trade-off in localization
accuracy and time efficiency.

F. Localization in Actual Application

We demonstrate the effectiveness of the proposed TM3Loc
in an actual application in this subsection. Unlike the previous
experiments on KAIST Urban Datasets, the image sequences
are jointly collected when building the HD map. In the
actual application, the HD map is usually built beforehand.
The inconsistency between the pre-built HD map and online
collected data will finally affect the localization accuracy. In
the actual application demonstration, we validate TM3Loc in
Shougang Park, an urban scenario with the HD map built by
the map builder. The absolute error of the built HD map is
around 0.076 m measured by the hand-held RTK device. The
data collecting vehicles are equipped with a monocular camera
with a resolution of 1920×1080 at 10Hz, an OXTS INS system
plugin with RTK signals that can output the vehicle poses at



From the result, one can observe that the overall localization
error reaches at 0.255m and at 0.146m in vertical, which
grows more significant than the experiments on KAIST

Urban Dataset, especially on urban scenarios (Urban 26)
despite the different testing places.

Fig. 8. Trajectories of Shougang 07, Shougang 08 and Shougang 09.

100Hz. The computing platform is a Nuvo-6108G computer
with i7 6700 CPU and NVIDIA TITAN X GPU for real-time
image segmentation processing and localization calculation.
The number of extracted visual features for each frame is set
as 250, and the number of the keyframe in sliding window K
is set as 10, and NT of linear approximation is set as 3 to
ensure the real-time performance. The reference localization
poses are obtained from the immediate OXTS INS system
output. The algorithm is tested on three recorded sequences,
Shougang 07, Shougang 08, and Shougang 09, with 3.2km,
2.0km, and 1.3km. The trajectories of these three sequences
are plotted in Fig. 8. The localization result is shown in Table
V and the runtime performance is summarized in Table VI.

From the result, one can observe that the overall localization
error reaches at 0.255m and at 0.146m in vertical, which
grows more significant than the experiments on KAIST Urban
Dataset, especially on urban scenarios (Urban 26) despite the
different testing places. The result shows that the inconsistency
between the pre-built HD map and online collected data affects
the localization result of the proposed algorithm. Firstly, due to
the change of the road infrastructures, the lane markings and
poles in the pre-built HD map can be inconsistent with the
actual situations. Fig. 9 visualizes several corner cases when
HD map landmarks fail to localize vehicles.

In these cases, the HD map lanedmarks cannot provide valid
localization constraints in longitudinal or vertical direction.
Although our system can pass through these cases thanks to
the tightly-coupled visual features, the estimation can grad-
ually drift if no valid localization provided for a long time.

(a) (b)

Fig. 9. Example images of corner cases that the pre-built HD map can
be inconsistent with the actual situations. Pre-built HD map landmarks are
projected on the images with estimated poses. One can see the missing lane
boundaries in (a) and removed poles in (b).

This results in an increased localization error in longitudinal
direction. Secondly, the absolute error of the HD map itself
and the differences between the HD map coordinates and
online RTK results can also magnify the localization error.
However, this will not happen in previous experiments on
KAIST Urban Dataset. When conducting localization on the
identical sequences used for mapping, the resulting error will
not be affected by the misalignment between the reference
poses and HD map since they share the exact coordinates.
Considering this effect, we also report the aligned ATE with
SE(3) alignment. This operation can eliminate the constant
biases between reference and estimated poses, therefore re-
flecting the structure error of the whole trajectory. The result
shows that the estimated trajectories reaches at an error of
0.201m in average, which are accurate, especially in Shougang
09 where TM3Loc reaches at an error of 0.114m.

As for the runtime performance, results show that the overall
average processing time for each frame is 71.3 ms in a
single thread, less than the time interval of subsequent images
(100 ms), indicating the system can well meet the real-time
requirement. In a word, the experiments demonstrate that the
proposed TM3Loc is able to well localize the vehicles for
actual applications in terms of accuracy and efficiency.

TABLE V
ATE OF TM3LOC LOCALIZATION METHODS IN THREE SHOUGANG PARK

SEQUENCES IN UNIT METER (M), AS WELL AS ARE IN UNIT DEGREE
(DEG). MOREOVER, THE ATE WITH SE(3) ALIGNMENT IS ALSO

REPORTED.

Sequence ATE ∆x ∆y ∆z ATE(aligned) ARE

Shougang 07 0.239 0.070 0.158 0.166 0.216 2.87
Shougang 08 0.299 0.124 0.229 0.146 0.218 2.76
Shougang 09 0.215 0.061 0.191 0.077 0.114 2.05

Average 0.255 0.089 0.188 0.146 0.201 2.69

IV. DISCUSSION

The experiments above showcase the high precision lo-
calization ability of the proposed TM3Loc. The combina-
tion between the visual feature and HD map residuals can
compensate each other when HD map landmark observations
are insufficient, making it robust in most cases. However,
the system might inevitably suffer the localization drift when
the HD map landmark constraints are insufficient for a long



TABLE VI
RUNTIME PERFORMANCE OF TM3LOC IN SHOUGANG PARK DATASETS.
THE AVERAGE EXECUTION TIME OF EACH MAIN MODULE IS REPORTED.

Main module Time

Frontend
HD map landmark perception 11.3 ms
HD map query & SCM pre-processing 10.9 ms
Visual feature detection & tracking 29.3 ms

Backend
Visual feature residuals 5.1 ms
HD map landmark residuals 13.6 ms
Linear approximated residuals 0.3 ms

Whole system 71.3 ms

time. For instance, in a highway scenario (e.g., Urban 23),
only a few poles in the whole trajectory can provide the
longitudinal constraints, resulting in a severe localization drift.
Moreover, the system is also sensitive to the incorrect data
association of HD map residuals. When the HD map has
changed, or the image perception is noisy, the inconsistency
between image perception and pre-built HD map might cause
the association failure in SCM. Although proposed outlier
rejection and initial guess generation strategy can filter out the
wrong data association, these strategies might fail in extreme
cases when encountering severe perception noise or HD map
misalignment. As a result, the wrong data association might
ruin the system’s performance and result in a bad localization
result.

V. CONCLUSIONS

This study proposes TM3Loc to precisely estimate the vehi-
cle poses using a monocular camera and HD map landmarks.
In the frontend, the algorithm uses the semantic chamfer
matching method that is flexible to model the map-matching
cost function for various landmark types and shapes. In the
backend, the visual features are incorporated in a tightly-
coupled fashion such that the vehicle pose is estimated by
jointly optimizing the visual feature constraints and the HD
map landmark feature constraints using sliding window-based
optimization. Moreover, the linear approximated residual al-
gorithm is introduced to accelerate the optimization, such
that the pose estimation can be performed in real-time. The
proposed algorithm is evaluated on a large-scale dataset with
self-developed HD maps. The results showed that the proposed
algorithm could localize the vehicle poses in different scenar-
ios with an excellent accuracy level exceeding that of other
methods by a large margin. However, the TM3Loc algorithm
is also impacted by the insufficiency of visual features in some
extreme corner cases, such as the highway scenarios, and also
sensitive to the bad image perception and the severe incon-
sistency between HD map and detected landmarks. Future
works include fusing IMU, GNSS, and odometer sensor data
to compensate for the shortcomings of visual features, thereby
further improving the robustness and accuracy of the system.
In conclusion, the TM3Loc algorithm has been validated
as a robust monocular map-matching algorithm for precise
vehicle localization that facilitates the low-cost solution for
autonomous driving localization.
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