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INTRODUCTION1
The evolution of ego-vehicle perception systems has been a pivotal force in enabling production-2
grade L2+ autonomous driving. Modern systems leverage tightly integrated multi-modal sensor3
suites, such as cameras, LiDAR, and radar, to capture heterogeneous sensory signals from complex4
road environments. Unified representation paradigms, including Bird’s-Eye-View (BEV) (1, 2)5
and 3D Occupancy Grids (OCC) (3–5) have significantly advanced feature integration, supporting6
robust scene understanding at scale. The emergence of Vision-Language Models (VLMs) (6, 7)7
further equips perception systems with human-like reasoning capabilities, enabling adaptive inter-8
pretation in open-world conditions.9

Despite this progress, the inherent limitations of on-board sensors such as occlusion, mea-10
surement noise, adverse environmental effects, and restricted fields of view remain critical bottle-11
necks preventing reliable operation at higher levels of autonomy (e.g., L3 and above), especially in12
Complex Adverse Traffic Scenarios (CATS) (8, 9). Severe variations in weather and lighting con-13
ditions introduce substantial sensing degradation, reducing detection reliability and propagating14
uncertainty into downstream planning and control modules (10–12).15

While numerous real-world datasets such as KITTI (13), Waymo (14), and nuScenes (15)16
have played a transformative role in advancing autonomous driving perception, they primarily cap-17
ture conventional road, weather, and lighting conditions. Due to the stringent and unpredictable18
data collection requirements, datasets covering CATS remain scarce, and research in these scenar-19
ios has often had to rely on digital simulations (16, 17) or controlled indoor environments (12),20
which cannot fully replicate real-world variability and sensor behavior.21

To fill this gap, we introduce a comprehensive real-world dataset specifically designed to22
capture the challenges of autonomous driving under Complex Adverse Traffic Scenarios. This23
dataset was collected across four seasons with diverse adverse weather (rain, snow, fog), varied24
lighting (direct sunlight, low-light, nighttime), and dynamically evolving roadway environments,25
including irregular work zones and snow-covered roads. It includes synchronized 10 Hz LiDAR,26
30 Hz multi-view cameras, and 125 Hz GNSS/IMU measurements.27

DATASET28
In this section, we introduce our vehicle configurations, data acquisition, and annotations.29

Vehicle configurations30
We used a Lincoln MKZ sedan to collect data, with the main sensors installed on an aluminum31
frame, as shown in Figure 1.32

Sensors setup33
The vehicle is equipped with a 128 beam mechanical spinning LiDAR, seven automotive grade34
GMSL2 cameras, and one high-precision INS. The LiDAR is installed in the upper middle position35
to cover the widest 360 degree viewing angle. Seven cameras include two front-view (wide-angle36
and telephoto) cameras, one rear-view camera, and four side-view cameras.37

Speifically, we use 10 Hz RoboSense Ruby Plus 128-beam LiDAR, with dual return mode,38
250m range, and angle resolution 0.2◦. Cameras are 30 Hz OMNIVISION OX08B40, YUV42239
8bit, 3840×2160, 140dB HDR, LFM for front and rear ones. On the other hand, we use OMNIVI-40
SION OX03C10, YUV422 8bit, 1920×1080, 140dB HDR, LFM for side ones. In addition, one41
deeply coupled GPS/INS integration with Epson G320 IMU, 0.5◦/h bias instability is employed.42
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FIGURE 1 Sensor configurations of our data-collecting vehicle.

Data acquisition1
We collected data in different seasons, weather, and lighting conditions (see Figure 2), and col-2
lected the raw data of ROS2 bags through multiple hard drives stored simultaneously. The cameras,3
LiDARs, and INSs all publish hardware timestamps. Finally, the point clouds and uncompressed4
camera images were unpacked from the recorded raw data bags.5

For camera calibration, we used the original factory internal parameters provided by the6
suppliers. We referred Koide et al. (18) to the calibration of camera and LiDAR extrinsic parame-7
ters. The calibration from LiDAR to IMU was carried out with reference to Lv et al. (19).8

During our collection, we ensured that our INSs were always in a fixed status to get the9
most precise global localization. This information is then used to derive our initial guess for the10
poses of sensor frames in each time stamp. Finally, the fine-tuning is conducted through GICP (20)11
for point clouds registration, which ultimately transformed to obtain our ground truth localization12
and pose of each frame.13

Data annotation14
We provide precise 4D annotation, including 3D bounding boxes and time-consistent IDs, as well15
as time-consistent dimensions for rigid objects. Annotation is achieved through the fusion of16
images and point clouds, and we provide detailed annotations for any object that can only be17
recognized in an image or a point cloud. Meanwhile, each object has a globally independent ID to18
assist in cross-frame re-recognition.19

Two major categories of vehicles and vulnerable road users (VRU) are set for dynamic20
objects. In the category of vehicles, we further distinguish them with six subclasses: Car, Van,21
Truck, Trailer, Bus, and Others. Among them, due to the potential impact on traffic behavior and22
subsequent tracking tasks, we set an emergency attribute for them to distinguish between police23
cars, fire trucks, and ambulances on duty. For the VRU class, our subclasses include Pedestrian,24
Scooter, Bicycle, and Motorcycle.25

In addition, a virtual link could be given through an ID pair, indicating the physical con-26
nection between the two. For example, a link between one Car object and one Trailer object may27
together indicate a pickup truck towing a trailer.28
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FIGURE 2 Ten typical complex and adverse scenarios.

CONCLUSION1
In this work, we present a perception dataset with Adverse Traffic Scenarios (CATS-V2V). It is a2
large-scale real-world dataset collected on various adverse weather, lighting, and road conditions,3
including rain, snow, direct sunlight, nighttime, urban intersections, and roads in rural and campus4
areas. Specifically, the dataset provides anonymized point clouds and images from one LiDAR and5
seven cameras of the vehicle, as well as 4D bounding box annotations (3D + time) and HD Maps.6
Future plans include combining multiple vehicles, collaborating with roadside infrastructure, and7
including diverse emerging automotive sensors to provide a richer dataset covering various corner8
cases, and developing tools for converting it to motion datasets and realistic digital twins. We hope9
the dataset will promote research in the community.10
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