
Transportation Research Part C 178 (2025) 105254 

A
0

 

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc  

On the robotic uncertainty of fully autonomous traffic: From 

stochastic car-following to mobility–safety trade-offs
Hangyu Li a,b , Xiaotong Sun a ,∗, Chenglin Zhuang a, Xiaopeng Li b
a Intelligent Transportation Thrust, Systems Hub, The Hong Kong University of Science and Technology 
(Guangzhou), Nansha, Guangzhou, 511458, Guangdong, China
b Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, 53706, WI, United States

A R T I C L E  I N F O

Keywords:
Fully autonomous traffic
Robotic uncertainty
Stochastic car-following
Collision-inclusive capacity
Traffic management and optimization

 A B S T R A C T

Recent transportation research highlights the potential of autonomous vehicles (AV) to improve 
traffic flow mobility as they are able to maintain smaller car-following distances. However, as 
a unique class of ground robots, AVs are susceptible to robotic errors, particularly in their 
perception and control modules with imperfect sensors and actuators, leading to uncertainties 
in their movements and an increased risk of collisions. Consequently, conservative operational 
strategies, such as larger headway and slower speeds, are implemented to prioritize safety 
over mobility in real-world operations. To reconcile the inconsistency, this paper presents an 
analytical model framework that delineates the endogenous reciprocity between traffic safety 
and mobility that arises from AVs’ robotic uncertainties. Using both realistic car-following data 
and a stochastic intelligent driving model (IDM), the stochastic car-following distance is derived 
as a key parameter, enabling analysis of single-lane capacity and collision probability. A semi-
Markov process is then employed to model the dynamics of the lane capacity, and the resulting 
collision-inclusive capacity, representing expected lane capacity under stationary conditions, 
serves as the primary performance metric for fully autonomous traffic. The analytical results 
are further utilized to investigate the impacts of critical parameters in AV and roadway designs 
on traffic performance, as well as the properties of optimal speed and headway under mobility-
targeted or safety-dominated management objectives. Extensions to scenarios involving multiple 
non-independent collisions or multi-lane traffic scenarios are also discussed, which demonstrates 
the robustness of the theoretical results and their practical applications.

1. Introduction

The emergence of autonomous vehicles (AVs), or fully automated vehicles, offers the potential to improve the overall safety and 
mobility of road transportation (Fernandes and Nunes, 2012; Jiménez et al., 2016). AVs with intelligent decision-making abilities 
and accurate machinery operations will be able to prevent collisions caused by human misbehavior, which is identified as the 
leading cause of car crashes (Mueller et al., 2020). When investigating their impact on traffic mobility, AVs are usually treated as 
ideal machines with more advanced driving capabilities. Accordingly, they are assumed to maintain a shorter stable headway in 
traffic streams than human-driven vehicles (HDVs) (Morando et al., 2018), contributing to different levels of increased roadway 
capacity (Ran and Tsao, 1996) as per their market penetration (Talebpour and Mahmassani, 2016; Chen et al., 2017; Seo and 
Asakura, 2017).1

∗ Corresponding author.
E-mail address: xtsun@ust.hk (X. Sun).
https://doi.org/10.1016/j.trc.2025.105254
Received 13 December 2024; Received in revised form 5 June 2025; Accepted 22 June 2025
vailable online 10 July 2025 
968-090X/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/trc
https://www.elsevier.com/locate/trc
https://orcid.org/0000-0002-8667-9928
https://orcid.org/0000-0002-3493-8828
https://orcid.org/0000-0002-5264-3775
mailto:xtsun@ust.hk
https://doi.org/10.1016/j.trc.2025.105254
https://doi.org/10.1016/j.trc.2025.105254
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2025.105254&domain=pdf


H. Li et al. Transportation Research Part C 178 (2025) 105254 
However, AVs’ robotic nature may prevent these benefits from being realized (Li et al., 2022). Like other mobile robots, AV 
operation is streamlined into a standard process that consists of four modules: perception, localization, planning (or decision-
making), and control (Levinson et al., 2011). While the first two modules rely on sensors that determine how accurately the AVs 
perceive their relative positional relationship with their surroundings, the latter two represent their level of driving intelligence. 
Each module contains a certain level of uncertainty, which together cause a chance of system error, leading an AV a deviation from 
its ideal movement or even a collision with the surrounding objects. We refer to these inherent errors as robotic uncertainties, as 
they are problems that all autonomous robot systems will encounter, but have nothing to do with unknown external environments 
or intentions. Adopting conservative driving strategies, such as slower speed and longer car-following distance, could alleviate the 
negative impact of AVs’ systematic uncertainty on driving safety performance (Sybis et al., 2020). As a trade-off, it would limit the 
traffic capacity and undermine the overall traffic mobility.

Research efforts have been made to overcome the vehicular robotic deficiency, by reducing perception errors, improving 
localization accuracy (Wen et al., 2022), and developing robust control technologies against uncertainty (Huang et al., 2024), 
especially in Adaptive Cruise Control (ACC) or Cooperative Adaptive Cruise Control (CACC) (Zhou et al., 2017; Zhou and 
Ahn, 2019; Kontar and Ahn, 2022). Nevertheless, the system uncertainty could only be mitigated instead of being completely 
diminished (Mohammadian et al., 2023). In this respect, a growing research direction focuses on the verification and validation 
of AV safety performance under both simulated and realistic naturalistic driving environments (Waymo, 2017; Motors, 2018; Feng 
et al., 2021; Yan et al., 2023; Xu et al., 2022; Feng et al., 2023; Araujo et al., 2023), aiming to identify the critical scenarios that 
lead to AV safety hazard. Also closely intertwined with uncertainty, stability emerges as another key concern. From the empirical 
experiments of ACC systems in commercial vehicles, Makridis et al. (2021) and Li et al. (2021) identified the characteristics of 
oscillation amplification. Qin et al. (2023) further combine AV with HDV and study the stability and management of platoons 
under mixed traffic conditions. Other studies, such as Zhang et al. (2020) and Wang et al. (2020), theoretically delineated the 
impact of uncertainty, particularly the positioning errors caused by robotic characteristics, on stability in automated car following 
systems. Traffic mobility, unfortunately, is usually overlooked in these studies. In fact, due to the absence of laws and regulations 
on AV traffic mobility (Shladover and Nowakowski, 2019; Vignon and Bahrami, 2025) and public concerns about autonomous 
driving collisions (Kyriakidis et al., 2015; Howard and Dai, 2014; Xing et al., 2022), autonomous driving companies usually adopt 
conservative driving approaches in real-road AV driving tests to achieve error-free safety performance. And as indicated earlier, 
when driving slower and keeping longer car-following distances than the surroundings, those pilot AVs naturally become moving 
bottlenecks that hold up regular traffic flows, generating traffic congestion and potential danger to roadways (Knoop et al., 2019; 
Schakel et al., 2017; McCarthy, 2022).

This paper therefore aims to investigate the mutual relationship between traffic mobility and safety performance in a fully 
autonomous vehicle environment, e.g., a dedicated lane on a highway. In the literature, two recent studies have also highlighted 
the trade-off between AV safety and mobility under uncertainty (Shi and Li, 2021; Li, 2022). Shi and Li (2021) validate the presence 
of stochastic behavior of autonomous vehicles from empirical vehicle trajectory data under different headway settings. Li (2022) 
further delineate the trade-off through an analytical approach grounded in a mathematical model of vehicle control dynamics, which 
also captures the relationship between stability and the two focal aspects: safety and mobility. This study further contributes from 
two perspectives. First, an analytical model is developed to explicitly incorporate the common robotic uncertainties arising from 
AV operation process, providing a structured approach to mathematically relate safety and mobility performances, which can be 
applied to both microscopic control models and empirical data. Second, macroscopic traffic flow considerations are emphasized 
beyond microscopic vehicle controls, connecting individual AV behavior to roadway-level outcomes, seeking to provide insightful 
suggestions to AV manufacturers and traffic management authorities to ensure AV development aligns with societal benefits.

The rest of this paper is organized as follows. Section 2 overviews the model framework we proposed to link robotic uncertainties 
of autonomous vehicles with mobility of fully autonomous traffic, that is, the traffic streams composed by homogeneous autonomous 
vehicles. Under this framework, Section 3 concentrates on the automated car-following process as a specific example and derives 
the stochastic motion in a statistic manner. Section 4 then outlines the stochastic evolution of macroscopic fully autonomous 
traffic through a semi-Markov process and formulates the collision-inclusive capacity as an indicator for mobility. Based on the 
previous analytical results, Section 5 discusses the applications of the model, including sensitivity analyses from the angle of design 
suggestions, and the optimization of critical variables in the view of transportation management. Section 6 extends the problem to 
some special cases with extremely low probabilities to highlight the comprehensiveness and scalability of this study. Section 7 then 
finally concludes the paper.

2. Robotic uncertainty and collision-inclusive capacity

Perception error is regarded as the vital error source that significantly impacts the motion of autonomous vehicles (Liu and 
Park, 2021). Perception information is usually modeled as random variables with specific distributions, inducing to a probability of 
deviation between observation and reality. When the deviated observation is fed into the subsequent modules, the error propagates 
through the AV operation process, resulting in a stochastic deviation between the actual motion and the expectation. In addition, the 
controller is physically limited and cannot achieve the planned motion perfectly and without delay. Moreover, due to the complex 
vehicle dynamics and the large amount of randomness present in real-world operations, actuators can also generate certain errors 

1 Seo and Asakura (2017) has shown AVs could improve the roadway capacity when their proportion reaches beyond some threshold.
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when being controlled by autonomous driving (Zhou et al., 2017; Hu et al., 2022). These robotic uncertainties are inherent in all 
mobile robots with sensors, onboard algorithms, and actuators, even in an environment within operational design domain following 
established intentions. Therefore, even employing a theoretically collision-free driving strategy, AVs with robotic uncertainties may 
still have a chance to encounter collisions or any other unexpected behaviors. This characteristic and its impact are often ignored 
in the macroscopic traffic analysis of autonomous vehicles.

The following set of equations conceptually models the process described above. As AVs’ operation is conducted in a discrete 
dynamic process, the ego vehicle 𝑒 estimates its surrounding objects’ location in each time step 𝑘. Then the stochastic relative 
position 𝑋𝑖

𝑘 of each object 𝑖 is observed based on the actual relative position 𝜒 𝑖
𝑘 with a random error 𝑂(𝜒 𝑖

𝑘). 

𝑋𝑖
𝑘 = 𝜒 𝑖

𝑘 + 𝑂(𝜒 𝑖
𝑘), ∀𝑖 = 1, 2,… , 𝑛. (1a)

The ego vehicle’s planning could be integrated as a function 𝛤 (⋅), which maps the observed historical and current relative 
positions of surrounding object 𝑖, 𝑖 = 1, 2,… , 𝑛 being expressed by 𝑋1∶𝑛

𝑘−𝑚ℎ∶𝑘
 to its planning trajectory 𝐹 𝑒

𝑘∶𝑘+𝑚𝑓
:

𝐹 𝑒
𝑘∶𝑘+𝑚𝑓

= 𝛤 (𝑋1∶𝑛
𝑘−𝑚ℎ∶𝑘

). (1b)

The observed positions from 𝑚ℎ steps ago (𝑘 − 𝑚ℎ) to the current step 𝑘 are utilized to optimize the perception results, make 
predictions of surrounding objects, and ultimately influence decision-making result. The planning trajectory 𝐹 𝑒

𝑘∶𝑘+𝑚𝑓
 looks 𝑚𝑓  steps 

ahead so as to generate a motion trajectory from current step 𝑘 to future (𝑘+𝑚𝑓 ). Note that the function itself is deterministic once 
the input is given, but the actual action 𝐴𝑘

𝑒  is formed by the motion planning at the current time step 𝐹 𝑒
𝑘 , combined with the control 

error 𝑂(𝐹 𝑒
𝑘 ): 

𝐴𝑒
𝑘 = 𝐹 𝑒

𝑘 + 𝑂(𝐹 𝑒
𝑘 ). (1c)

As a random variable representing the position of the ego vehicle at time step 𝑘+1, 𝑋𝑒
𝑘+1 is achieved by adding the ego vehicle’s 

actual position 𝜒𝑒
𝑘 with its stochastic motion 𝐴𝑒

𝑘 at time step 𝑘: 

𝑋𝑒
𝑘+1 = 𝜒𝑒

𝑘 + 𝐴𝑒
𝑘. (1d)

We denote 𝑝𝑒𝑘+1 as the probability of collision caused by the ego vehicle’s stochastic motion at time step 𝑘+1, which is obtained 
by integrating the probability density 𝑓 of the stochastic position 𝑋𝑒

𝑘+1 of the ego vehicle at that time step over the physical region 
𝛺, where the ego vehicle would collide with other traffic participants: 

𝑝𝑒𝑘+1 = ∫𝛺
𝑓𝑋𝑒

𝑘+1
(𝜔)𝑑𝜔. (2a)

Due to the closed-loop control adopted by autonomous vehicles, their stability over time and over string can be strategically 
ensured. This property was proved in several previous studies (Gunter et al., 2020; Wang et al., 2020; Li, 2022). Accordingly, in 
the traffic stream with homogeneous autonomous vehicles, the collision probability of different vehicles at different time steps has 
a fixed expected value: 

E𝑝𝑒𝑘+1 = 𝑝. (2b)

The macroscopic safety level 𝑃  can then be evaluated by comprehensively considering the collision probability of autonomous 
vehicles per unit range and over unit time 𝐻 in the transportation system. This depends on the vehicle density 𝜌 in the system, the 
time step of autonomous vehicle operations 𝜏, and the collision probability of a single vehicle in a single time step 𝑝: 

𝑃 = 𝜌𝐻
𝜏
𝑝. (2c)

Note that 𝐻 denotes the duration over which the transportation system is being analyzed. Since we focus on homogeneous 
autonomous vehicle streams with stability strategically ensured, the per-time-step collision probability of a single vehicle, 𝑝, is 
assumed to be independent of the choice of 𝐻 .

Traffic mobility, on the other hand, is typically measured by traffic throughput, representing the number of vehicles passing 
through a designated study area, commonly a roadway segment, within a given time period. Traffic throughput is influenced by 
both roadway capacity and travel demand. In this study, however, we focus solely on roadway capacity or maximum throughput, 
as the demand is exogenously provided by social activities rather than being influenced by vehicle movements. When accounting 
for the possibility of collisions, the traffic state is either in normal operations with maximum capacity or in abnormal states when 
collisions block the traffic making throughput. The maximum capacity at normal state 𝑠+ is determined by the driving policy, i.e., the 
decision-making process 𝛤 (⋅) shown in Eq. (1b), while the abnormal capacity 𝑠− = 0. As a result, capacity at each fixed location 
becomes a random variable, whose expectation can be calculated based on the distribution over normal and abnormal states. We 
refer to this expectation as collision-inclusive capacity (CIC), which can be mathematically provided as follows: 

𝑠 = (1 − 𝜆)𝑠+ + 𝜆𝑠−, (3a)

𝜆 = 𝛬(𝑃 ). (3b)

Here, 𝜆 represents the probability of being in the abnormal state. One should note that a location can be in an abnormal 
state either when a collision occurs directly at that location, or when collisions happen downstream that congest the traffic, or 
3 
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Fig. 1. (a) Mixed traffic flow with both AVs and HDVs; (b) Fully autonomous traffic with robotic uncertainties.

when collisions occur upstream and obstruct traffic moving downwards. In this regard, we use function 𝜆 = 𝛬(𝑃 ) to represent the 
relationship between the probability of being in the abnormal state and its influential factors. Clearly, 𝜕𝛬𝜕𝑃 ≥ 0 as a higher collision 
probability increases the chance of being in the abnormal state. Furthermore, 𝛬(𝑃 = 0) = 0, and 𝛬(𝑃 ≥ 1) = 1.

Besides, both capacity of the normal state 𝑠+ and abnormal state probability 𝜆 are affected by driving strategy 𝛤 (⋅), as higher 
capacity indicates a shorter time gap between adjacent vehicles, which, according to Eq. (2c), also leads to a higher probability of 
collision. CIC then serves as a comprehensive measure of mobility in fully autonomous traffic.

3. The microscopic car-following scenario

We focus on the car-following scenario to further demonstrate the quantitative trade-off in mobility and safety. In this way, 
the single-lane CIC can represent mobility on the macroscopic scale. On the microscopic scale, we summarize the patterns of AV 
car-following with robotic uncertainties through simulation experiments and real AV data from Waymo (Ettinger et al., 2021), and 
then derive a random distribution representation to assist in subsequent analytical analysis.

3.1. Scenario establishment

Car-following is the simplest and most commonly seen traffic scenario, as well as the earliest and most mature vehicle automation 
functions. Several key assumptions on AVs’ car-following scenarios are presented as follows:

1. Ideal roadway segment. Consider a basic road segment with neither on- and off-ramps nor increase and decrease in the lane 
number. An infinite number of AVs are assumed to be discharged from upstream, and there are no bottlenecks downstream 
of the segment. Therefore, when considering boundary conditions, the inlet boundary follows the flow conservation and the 
outlet boundary has no constraints. In addition, no cyclic impact is considered, though they may exist on some particular 
roads, such as roundabouts, where the situation is complex and beyond the scope of this paper.

2. Longitudinal control. Our study focuses on longitudinal car-following in which only acceleration and braking of the vehicle 
are considered, and lateral maneuvers are excluded. Furthermore, only the influence of the preceding vehicle is taken into 
account for the ego vehicle. Perceptual information other than measurements of the preceding vehicle is ignored. In the 
meantime, the assumed perfect lateral control does not introduce additional errors to longitudinal movements. With the 
previous assumptions, rear-end collisions are the only type of accident. The location on the lane where collisions happen will 
be directly blocked, reducing the throughput to zero. Furthermore, its influence would spread to both upstream (blocked) 
and downstream (empty) traffic.

3. Predetermined Speed. Human-driven vehicles usually adjust and maintain a safe and comfortable speed when their movements 
are restricted by vehicles in front. From the microscopic perspective, it leads to heterogeneous car-following distances, as 
shown in Fig.  1(a). From an aggregate point of view, it contributes to the endogenous relationship of average speed and traffic 
density under equilibrium represented by the fundamental diagram (Greenshields et al., 1935; Daganzo, 1997). Alternatively, 
fully autonomous car-following can be programmed and predetermined. Although they have stochastic errors due to robotic 
uncertainties, typical or average values of different speeds and following distances can be maintained, as shown in Fig.  1(b). 
Therefore, we view speed as an exogenous variable whose relationship with traffic density can be programmed.

3.2. Simulation of a high-order car-following model

To quantify the impact of robotic uncertainty, we modify the Intelligent Driver Model (IDM), which is widely used in autonomous 
vehicle analysis and is believed the foundational model for various Adaptive Cruise Control (ACC) functions (Milanés and Shladover, 
2014), by adding independent stochastic terms to an ego vehicle’s observations and control following a preceding vehicle. The 
modification provides: 

𝑥̇ = 𝑣 , (4a)
𝑒 𝑒

4 



H. Li et al. Transportation Research Part C 178 (2025) 105254 
Fig. 2. Simulated stochastic car-following motion under robotic uncertainties based on IDM car-following model. The dynamics are simulated by MATLAB 
Simulink, and robotic errors are introduced into the perception of distance, the perception of speed, control.

𝑣̇𝑒 = 𝑎

(

1 −
(

𝑣𝑒
𝑣0

)𝜉
−
(

𝑑∗(𝑣𝑒, 𝛥𝑣𝑜)
𝑑𝑜

)2
)

+ 𝜖𝑣̇, (4b)

𝑑∗(𝑣𝑒, 𝛥𝑣𝑜) = 𝑑0 + 𝑣𝑒ℎ0 +
𝑣𝑒𝛥𝑣𝑜

2
√

𝑎𝑏
. (4c)

In Eq. (4a), 𝑥𝑒 indicates the location of the ego (following) vehicle, whose increment is its actual speed 𝑣𝑒. The acceleration 𝑣̇𝑒
is bounded by the maximum acceleration and comfortable deceleration 𝑎 and 𝑏 in Eqs. (4b) and (4c). In addition, 𝑣0, 𝑑0, and ℎ0
refer to the free flow speed, minimum safe distance (or named as effective vehicle length by Treiber and Kesting, 2013), and safe 
headway, respectively. Under constant time headway (CTH) car-following policies, 𝑑0 is set to zero. It leads to two observations on 
gap and speed difference, which satisfy the following system of stochastic differential equations (SDE):

𝑑𝑜 = 𝑑 + 𝜖𝑑 , (4d)

𝛥𝑣𝑜 = 𝛥𝑣 + 𝜖𝛥𝑣, (4e)

 where 𝜖𝑑 is the stochastic term for observation of distance, and 𝜖𝛥𝑣 the uncertainty on speed difference. Moreover, 𝜖𝑣̇ demonstrates 
the control error in Eq. (4b). They are all assumed to follow Gaussian distributions with zero mean (Ni et al., 2009).

Since there are no closed-form solutions for the above SDEs, we resort to simulation methods to obtain an AV’s random motion. 
The simulation process is given in Fig.  2. To start with, we established a basic IDM model and added corresponding perception and 
control errors to the observation of distance, relative velocity, and the ego vehicle’s acceleration. These errors are independent and 
follow Gaussian distributions. We then ran this modified IDM model at a given time step (consistent with the control time step of a 
real AV), with the preceding vehicle being set a constant driving speed. In the simulation experiments, the preceding vehicle drives 
at 𝑣 = 50 km/h, while the free flow speed is set at 𝑣0 = 120 km/h; The other key parameters are set to 𝑎 = 2 m ⋅ s−2, 𝑏 = 2 m ⋅ s−2, 
𝜉 = 4, 𝑑0 = 0 m, and ℎ0 = 1.5 s. In each round of simulation, the initial car-following distance and speed of the ego vehicle are at 
their expected values, which are 𝑣𝑒(0) = 𝑣𝑓 = 50 km/h and 𝑑(0) = (

𝑑0 + ℎ0𝑣𝑒(0)
)

(

1 −
(

𝑣𝑒(0)∕𝑣0
)𝜉
)− 1

2 = 21.1546 m.
Fig.  3 illustrates the simulation results when all added error terms following the standard Gaussian distribution, that are 

∼  (0, 1). In particular, Fig.  3(a) shows the stochastic changes of ego vehicle’s acceleration over time and its corresponding car-
following distance. Fig.  3(b) then presents the histogram of distance between the two vehicles during the whole simulation process. 
As can be seen, the distance exhibits strong Gaussian characteristics in the statistical sense: A bell-shaped curve is formed where 
values closer to the mean have higher probabilities. The red line in Fig.  3(b) represents the probability density of a Gaussian 
distribution, fitted using the statistical mean and variance derived from the simulation results of the following distances. The 
visual comparison between the simulated results and the fitted Gaussian distribution suggests that the car-following distances 
under stochastic observation and speed exhibit Gaussian errors over time, despite the analytical form being unobtainable due to the 
closed-loop control characteristics of the IDM.
5 
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Fig. 3. A typical simulation result: (a) Acceleration of the ego vehicle (red dotted line) and distance between two vehicles (blue circled line) over time; (b) 
Histogram of distance between two vehicles (blue bars) and the fitted Gaussian distribution (red line).

Table 1
Goodness of fit of Gaussian distribution to distance under different uncertainty conditions.
 𝜖𝑑 ∼  (0, 0.1)  (0, 0.5)  (0, 1)

 𝜖𝛥𝑣 ∼  (0, 0.1)  (0, 0.5)  (0, 1)  (0, 0.1)  (0, 0.5)  (0, 1)  (0, 0.1)  (0, 0.5)  (0, 1) 
 𝜖𝑣̇ ∼  (0, 0.1) 0.0170 0.0172 0.0208 0.0169 0.0168 0.0189 0.0166 0.0193 0.0198 
 𝜖𝑣̇ ∼  (0, 0.5) 0.0410 0.0278 0.0226 0.0408 0.0280 0.0236 0.0392 0.0280 0.0237 
 𝜖𝑣̇ ∼  (0, 1) 0.0590 0.0479 0.0408 0.0585 0.0478 0.0392 0.0579 0.0465 0.0388 

To further evaluate the goodness-of-fit of the Gaussian distribution in modeling stochastic car-following distance in a macroscopic 
statistical sense, Normalized Root Mean Squared Error (NRMSE) is used as the quantitative measure: 

NRMSE =
‖

⃖⃖⃖⃖⃗ref − ⃖⃖⃖⃖⃖⃗exp‖
‖

⃖⃖⃖⃖⃗ref −mean( ⃖⃖⃖⃖⃗ref )‖
. (5)

Here, ‖⋯ ‖ indicates the 2-norm of a vector, ⃖⃖⃖⃖⃗ref  refers to counts in each corresponding bin derived from the fitted Gaussian 
distribution, ⃖ ⃖⃖⃖⃖⃗exp shows the vector of counts in 100 bins generated from the simulation experiment results, and mean(⋅) calculates the 
average value of a vector. According to its definition, an NRMSE close to zero indicates a perfect fit to the reference data (i.e. no 
error), whereas an NRMSE close to one means a fit no better than a straight line at matching the reference.

To test the robustness of the fitted Gaussian under different uncertainty conditions, we assume that the observation and control 
errors 𝜖𝑑 , 𝜖𝛥𝑣, and 𝜖𝑣̇ have variances of 0.1, 0.5, and 1, while their mean values remain at 0. The typical values represent the universal 
applicability of the perception capability of AVs as they cover precision from upper limit (such as the state-of-the-art performance in 
the NuScenes perception benchmark; Caesar et al., 2019) to lower limit (sub-meter level precision of millimeter wave radars). This 
results in a total of 27 fitness results, summarized in Table  1. The results indicate that NRMSEs are less than 0.06 regardless of the 
uncertainty conditions. Thus, it is reasonable to assume that the stochastic car-following distance follows a Gaussian distribution in 
a macroscopic statistical sense, and this assumption will be used for subsequent analysis.

3.3. Empirical AV data analysis

Considering that simulation experiments may not fully capture realistic driving behaviors, we also utilized real-world car-
following data from commercial automated vehicles to validate their stochastic characteristics in longitudinal movements and 
verify our modified IDM in describing AV stochastic motion caused by robotic uncertainties. The Waymo Open Dataset (Ettinger 
et al., 2021) was selected as the primary dataset for the empirical analysis. Zhou et al. (2024) processed the dataset, focusing on 
longitudinal car-following scenarios with a constant-speed leading vehicle (LV) to accurately reflect the intricate behaviors of AVs, 
distinguishing it from the stochasticity caused by LV’s dynamics. Key data representing the states of the LV and the following AV 
(FAV), including spatial gaps, speeds, accelerations, and positions, are recorded. Our previous study (Zhou et al., 2024) identified 
that Waymo’s data collection methods make it the only dataset capable of effectively capturing speed fluctuations in AV operations 
while maintaining stability. The OpenACC dataset (Makridis et al., 2021) with multiple car-following AVs, however, exhibits string 
instability, and the use of smoothing postprocessing methods to makes it unable to capture subtle stochastic motions. Therefore, 
considering that we isolated the impact of robotic uncertainty from LV dynamics on FAV motion through data filtering, it is 
well-suited for this study in identifying reliable results of stochastic car-following distances.
6 
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Fig. 4. A real car-following data result from Waymo dataset: (a) Acceleration of FAV (red dotted line) and distance between two vehicles (blue circled line) 
over time; (b) Histogram of distance between two vehicles (blue bars) and the fitted Gaussian distribution (red line).

To identify stable car-following scenarios from complex real-world AV driving data, we conducted a sequence of data filtering 
steps. First, based on our previous work (Zhou et al., 2024) extracting unified car-following data, we selected scenarios where 
the preceding vehicle of the FAV maintained a constant speed, while the FAV tried to keep a consistent distance. Specifically, we 
retain the cases where the LV maintains a steady speed of around 20.2 m∕s, the most common speed observed for the LVs, with a 
deviation of less than 0.2 m∕s. Next, we excluded cases where the speed difference between two vehicles exceeded 1 m∕s, as larger 
differences may indicate an unstable car-following state, such as a free-flow approach or continuous braking. Finally, since the 
default car-following distance setting could vary across driving scenarios, we normalized the car-following distance in all sampled 
data to have a uniform variance of one and a mean of zero, ensuring comparability across the sub-datasets.

Fig.  4 illustrates the realistic car-following behaviors of AVs after data processing. In align with Fig.  3, Fig.  4(a) displays the 
stochastic variations in the FAV’s acceleration over time, which is colored in red, along with the corresponding car-following 
distances of FAVs represented by blue circular dots. The observed discontinuities in the distance data are attributed to the inclusion 
of multiple trajectories. Fig.  4(b) presents a histogram of car-following distances across all sampled trajectories. As can be seen, the 
car-following distances in real driving scenarios also exhibit strong Gaussian characteristics in the macroscopic statistical sense: the 
histogram forms a bell-shaped curve where values closer to the mean have higher probabilities. Similarly, the red line illustrates 
the probability density of the fitted Gaussian distribution, using the mean and variance from the sampled data, with a NRMSE 
of 0.23348 quantifying the goodness-of-fit. Overall, the empirical data analysis suggests that Gaussian distribution can serve as a 
reasonable approximation of AVs’ stochastic car-following distances, which validates the property revealed in the IDM simulation 
and also support its use in further analysis.

For other potential AV data in the future, or for those collected from new observations that may not strictly conform to the 
Gaussian distribution (generalized form as Eq. (2a)), advanced system identification methods (Meng et al., 2024) can help determine 
AV car-following behavior and distinguish between deterministic and stochastic components. Techniques such as Kernel density 
estimation can be adopted to derive an empirical probability density estimation. With the empirical estimation, say 𝑓 (𝑥), the 
collision probability in Eq. (2a) can be derived by ∫ 𝑙

−∞ 𝑓 (𝑥)𝑑𝑥. Thanks to its analytical nature, in spite of the empirical density 
function, subsequent macroscopic analyses shall still be valid. It makes our whole analysis framework highly robust and universal, 
highlighting its significance for traffic design and management.

3.4. Stochastic car-following distance in a stable string

In this section, we extend the previous modified IDM model in Eqs. (4) from an arbitrary pair of AVs to a homogeneous, fully 
autonomous car-following string, investigating the statistical properties of their car-following distances. By homogeneity, we mean 
that all vehicles adopt the same AV technology and driving strategy. The shared technology ensures a unified AV operation processing 
time 𝜏 and identical uncertainties 𝜖𝑑 , 𝜖𝛥𝑣, and 𝜖𝑣̇, while the same driving strategy guarantees that all vehicles maintain the same 
desired speed 𝑣 and headway 𝜂.

We assume that the car-following string remains stable when operating on dedicated lanes or within an operational design 
domain. This implies both the stability of each single vehicle’s control and the overall string stability of the vehicle string (Feng 
et al., 2019). For detailed stability analysis of vehicle operations, we refer to our previous work (Wang et al., 2020; Ma et al., 2022; 
Li, 2022), which will not be elaborated here. Consequently, the variance of the stochastic car-following distance of each pair or 
vehicles does not amplify with the string index but instead converges to a value fixed value. Meanwhile, as both IDM simulations 
and empirical AV data analysis suggest a Gaussian distribution for stochastic car-following distances, we denote the error between 
the desired and actual distance 𝜖 ∼  (0, 𝜎2), where 𝑥 represents indicate any index in the string.
𝑥 𝑥
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Table 2
R-Square values for different fitting to stochastic car-following distance.
 Polynomial Exponential

 𝑣𝜂 𝑣𝜂2 𝑣𝜂3 𝑣2𝜂 𝑣2𝜂2 𝑣3𝜂 𝑒𝑣𝜂 𝑒𝑣𝜂2 𝑒𝑣2𝜂  
 0.9288 0.9122 0.7463 0.932 0.9202 0.7703 0.6725 0.7592 0.7675 

Fig. 5. Relationship between the variance of stochastic car-following distance with desired speed and headway.

We further explore the relationship between 𝜎2𝑥 and the two controllable variables, desired speed 𝑣 and headway 𝜂, using IDM 
simulations. Fig.  5 visualizes how 𝜎2𝑥 changes as the desired speed varies from 𝑣 = 20 km/h to 100 km/h and 𝜂 from 1.0 s to 5.0 s. 
Correspondingly, a set of regressions are conducted to determine the most suitable quantitative relationship. The R-Square values 
are shown in Table  2, suggesting that 𝜎𝑥 is most likely to be proportional to 𝑣2𝜂. In addition, we notice that the desired headway 𝜂
and speed 𝑣 can be independently controlled under fully autonomous traffic. In this context, the stochastic car-following distance 
can then by formulated as follows: 

𝑑(𝑣, 𝜂) = 𝑣𝜂 + 𝜖𝑥, (6a)

𝜖𝑥 ∼  (0, 𝜎2𝑥), (6b)

𝜎2𝑥 = 𝑣2𝜂𝜎2𝑜 ∝ 𝑣2𝜂 = 𝑣E𝑑(𝑣, 𝜂). (6c)

Here, 𝑣𝜂 is the desired car-following distance. A new term 𝜎2𝑜  is introduced to represent the variance of stochastic car-following 
behavior propagated from the complex robotic uncertainties of AV operations, which is independent of variables related to vehicle 
control strategy such as speed 𝑣 and headway 𝜂.

4. The macroscopic safety and mobility

We now shift our analysis from the microscopic scale of the fully autonomous traffic described by speed, headway, and inter-
vehicle distance at an arbitrary fixed point to the macroscopic scale, represented by speed, density, and throughput or flow rate 
across roadway segment. As suggested by Eq. (3), the maximum throughput becomes stochastic due to the possibility of collisions. 
This section then delineates the analytical derivation of the stochastic properties of maximum throughput in fully autonomous 
car-following scenarios.

4.1. Measurement of traffic safety

As the first step, we introduce a measurement of traffic safety, named collision rate, using the stochastic car-following distances 
discussed above.

4.1.1. Collision probability
Although traffic safety is measured differently in the literature, the probability of collision is the most intuitive and widely-

accepted indicator, especially in autonomous driving analysis (De Gelder et al., 2021). In homogeneous fully autonomous traffic, 
rear-end collisions occur when a bump-to-bump gap 𝑑(𝑣, 𝜂) becomes less than a vehicle’s length 𝑙, as illustrated in Fig.  6(a). Since 
8 
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Fig. 6. (a) Illustration of a rear-end collision and the corresponding collision probability under stochastic car-following distance; (b) Rear-end collision probability 
due to robotic uncertainty with varying desired speed and headway.

the stochastic car-following distance follows a Gaussian distribution in a statistical manner, the collision probability 𝑝 of a pair of 
AVs per time step could be expressed as a bi-variate function of speed 𝑣 and headway 𝜂: 

𝑝(𝑣, 𝜂) = 𝐹𝑑(𝑣,𝜂)(𝑙) = ∫

𝑙

−∞

1
√

2𝜋𝑣2𝜂𝜎2𝑜
𝑒𝑥𝑝

(

−
(𝜔 − 𝑣𝜂)2

2𝑣2𝜂𝜎2𝑜

)

𝑑𝜔. (7)

Here, 𝐹𝑑(𝑣,𝜂)(𝑙) represents the cumulative probability of stochastic car-following distance being less than or equal to the vehicle 
length 𝑙. Its analytical form is obtained by integrating the Gaussian density function over 𝜔, which spans from −∞ to 𝑙, the domain 
where a rear-end collision between the pair occurs.

Fig.  6(b) demonstrates how collision probability varies with headway 𝜂 and speed 𝑣, assuming 𝜎𝑜 = 0.05 s1∕2 and 𝑙 = 5 m. The 
color shows the base-10 logarithm of the probability to emphasize its order of magnitude. Align with the analytical relationship 
demonstrated in Eq. (7), the figure shows that the collision probability for a single pair of AVs per time step decreases with increasing 
speed for a fixed headway 𝜂. On the other hand, for a fixed speed, more conservative driving policies (i.e. larger headways) enhance 
traffic safety. In addition, the collision probability is more sensitive to changes in headway than to changes in speed. Especially at 
higher speeds, the collision probability shows only marginal differences. For example, the corresponding collision probabilities at 
speeds of 20 m∕s (72 km/h) and 25 m∕s (90 km/h) are nearly identical. This asymmetry also implies the same desired car-following 
distance may not result in the same collision probability. As illustrated in the figure, five red lines are marked to present constant 
desired car-following distances, which are 8 m, 28 m, 48 m, 68 m, 88 m, and 108 m, respectively. The grids the lines across change 
drastically, indicating the collision probability increases.

4.1.2. Collision rate
As outlined in the conceptual scenarios in Section 2, the macroscopic safety level can be evaluated by the collision rate of AVs per 

unit driving range and time in the transportation system. In car-following scenarios, the collision rate corresponds to the expected 
number of collisions occurring on an examined roadway segment per time step. Accordingly, it depends on the vehicle density 𝜌 on 
the roadway segment, the operational time step of AV operations 𝜏, and the collision probability of a single pair of AVs per time 
step 𝑝(𝑣, 𝜂), which is assumed to be independent across pairs. As a result, the collision rate 𝑃  for the longitudinal AV string along 
the roadway segment can be derived as a special case of Eq. (2c): 

𝑃 (𝑣, 𝜂) = 𝜏𝐿
𝜏E𝑑(𝑣, 𝜂)

𝑝(𝑣, 𝜂) = 𝐿
𝑣𝜂 ∫

𝑙

−∞

1
√

2𝜋𝑣2𝜂𝜎2𝑜
𝑒𝑥𝑝

(

−
(𝜔 − 𝑣𝜂)2

2𝑣2𝜂𝜎2𝑜

)

𝑑𝜔. (8)

Here, 𝐿 refers to the length of the roadway segment, and E𝑑(𝑣, 𝜂) denotes the expectation of car-following distances with desired 
speed and headway. Accordingly, the vehicle density is expressed as 𝐿

E𝑑(𝑣,𝜂) .

4.2. Traffic states and the associated capacities

Traffic capacity usually refers to the maximum flow passing by a fixed location under stationary traffic conditions, excluding 
scenarios involving collisions. However, when stochastic car-following distance and resulting collisions are considered, a fixed 
location may witness additional traffic states. As shown in Fig.  7, an occurred collision forces all following vehicles to stop 
completely, resulting in abnormal states both upstream (marked as blocked) and downstream (marked as empty). Furthermore, 
the transitions between normal and abnormal states also take some time due to vehicle acceleration and deceleration.
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Fig. 7. Traffic states consist of AVs’ desired trajectories under normal driving and with collisions (traffic trajectories are oriented from the bottom-left to the 
top-right).

4.2.1. Normal state
In the normal state, the average lane capacity is derived as the reciprocal of the mean of stochastic headway 𝜂: 

𝑠+(𝑣, 𝜂) = 1
E 𝑑(𝑣,𝜂)

𝑣

= 1
𝜂
. (9)

The full capacity 𝑠+ is the maximum attainable traffic flow rate under the safe condition that equals the reciprocal of the 
expectation of stochastic headway. It also serves as the upper bound of CIC, achieved when the collision rate approaches zero.

4.2.2. Abnormal state (empty or blocked)
Referring to Fig.  7, once a rear-end collision occurs, its influence spreads both downstream and upstream. A downstream location 

of the collision becomes empty once the precedent vehicle in front of the collision drives past, ending the normal traffic state. The 
location will stay in the empty state until the complete clearance of the collision site, whose duration is usually called the total 
clearance time (TCT) (Smith and Smith, 2002) and is denoted as 𝑇  hereafter. Clearly, the maximum flow rate in the empty state is 
zero: 

𝑠−𝑒 (𝑣, 𝜂) = 0. (10a)

Then when the first vehicle after the clearance arrives, the empty state ends, and the normal state resumes. In the time-space 
diagram, all homogeneous AVs maintain the same desired speed, giving the empty state parallel wave boundaries. Thus, the time 
in the empty state for any locations downstream of the collision is equal to 𝑇 .

Upstream locations, on the other hand, enter the blocked state as the vehicles passing by are forced to stop due to the collision 
ahead. The propagation from the normal state to the blocked state contributes to a shock-wave in the time-space diagram, squeezing 
the inter-vehicle distance of the car-following string, and the flow rate changes from 1∕𝜂 to zero correspondingly: 

𝑠−𝑏 (𝑣, 𝜂) = 0. (10b)

After a period of collision clearance 𝑇 , the road restores to normal gradually starting from the location of the collision. Essentially, 
the stopping and restoring shock-waves serve as the boundaries of the blocked state. The two shock-waves travel at the same speed, 
which can be expressed as: 

𝑐 =
𝑞𝑛 − 𝑞𝑏
𝜌𝑛 − 𝜌𝑏

. (10c)

Here, 𝑞𝑛 and 𝜌𝑛 denote the flow rate and density of the normal state, while 𝑞𝑏 and 𝜌𝑏 denote those of the abnormal (blocked) 
state. The two shock-waves are parallel and propagate from downstream to upstream. Consequently, irrespective of where it occurs, 
the abnormal state, including the empty and blocked states, persists for the same duration 𝑇  with zero throughput: 

𝑠−(𝑣, 𝜂) = 𝑠−(𝑣, 𝜂) = 𝑠−(𝑣, 𝜂) = 0. (10d)
𝑒 𝑏
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Fig. 8. The semi-Markov process of traffic states for a single lane roadway segment.

Table 3
Time of three states for different locations on the roadway segment.
 Location Normal before collision Abnormal (Empty or Blocked) Normal after clearance 
 𝑥 ∈ [0, 𝑥𝑐 ) (downstream)

[

0, 𝑥𝑐−𝑥
𝑣

) [

𝑥𝑐−𝑥
𝑣

, 𝑥𝑐−𝑥
𝑣

+ 𝑇
) [

𝑥𝑐−𝑥
𝑣

+ 𝑇 ,∼
)

 
 𝑥 ∈ [𝑥𝑐 , 𝐿] (upstream)

[

0, 𝑥−𝑥𝑐
𝑐

) [

𝑥−𝑥𝑐
𝑐

, 𝑥−𝑥𝑐
𝑐

+ 𝑇
) [

𝑥−𝑥𝑐
𝑐

+ 𝑇 ,∼
)

 

The zero throughput is the lower bound of CIC, achieved when the collision rate increases to one.

4.2.3. Transitional state
In reality, two additional transitional processes occur: the declaration of blocked AVs from desired speed 𝑣 to zero, and their 

acceleration from zero to 𝑣 after the clearance. However, these short-term transitions always accompany a collision and can therefore 
be considered as the margins of an abnormal (blocked) state. In addition, the duration of these two states is significant shorter than 
the total clearance time.2 In this context, the impact of these two transitions on calculating CIC can be ignored. Thus, we only 
consider normal and abnormal states in the subsequent analyses.

4.3. Collision-inclusive capacity

As introduced in Section 2, the expected lane capacity considering collisions caused by AVs’ robotic uncertainties can be derived 
by a weighted average of traffic capacity in different states, i.e., 𝑠 = (1 − 𝜆)𝑠+ + 𝜆𝑠− (see Eq. (3)). We now introduce a semi-Markov 
process to describe the transitions and determine the corresponding weight 𝜆.

4.3.1. The semi-Markov process
As illustrated in Fig.  7, one collision can create three disjoint normal states on the two-dimensional space–time plan: the first 

represents the downstream traffic unaffected by the collision, the second depicts the upstream free flow before encountering the 
stopping shock-wave, and the third occurs to the right of the restoring shock-wave, indicating blocked traffic recovering to normal 
after the collision is cleared. Suppose the collision happens at time 0 and position 𝑥𝑐 along the single-lane roadway segment of 
length 𝐿, Table  3 summarizes the states each location will experience from time 0, if no other collision happens. However, a second 
collision in the same lane may occur within one of the three normal traffic flows. Here, we focus on the case where a second collision 
happens only in the third normal state, making it independent of the first one. The analysis of second collisions in the other two 
normal states, which result into mutually is deferred to the extensions discussed in Section 6.

Since the stopping and restoring shock-waves are parallel, each point along the roadway segment will experience both the normal 
and abnormal states, with consistent durations for each state across all points, regardless of collision position. Furthermore, the 
dynamic changes in traffic states can be described by a semi-Markov process, as illustrated in Fig.  8. The normal state is associated 
with a sojourn time of 𝜏, while the abnormal state has a sojourn time of 𝑇 . For each point, the transition probability from the normal 
state to the abnormal state equals the collision rate on the roadway segment, 𝑃 (𝑣, 𝜂), while that of remaining in the normal state is 
1 − 𝑃 (𝑣, 𝜂). Meanwhile, the abnormal state will certainly transition back to the normal state after time 𝑇 . In addition, the collision 
rate 𝑃 (𝑣, 𝜂) is assumed to be extremely small, as collision among AVs in fully autonomous traffic are rare events given the maturity 
of AV technology.3 Therefore, the semi-Markov process governing traffic state changes remains mathematically well-defined.

Utilizing the semi-Markov process, we derive the weight 𝜆(𝑣, 𝜂) from the following equations: 

𝜆(𝑣, 𝜂) =
𝑠(𝑣, 𝜂)
𝑠+(𝑣, 𝜂)

𝑇
𝜏
𝑃 (𝑣, 𝜂), (11a)

𝑠(𝑣, 𝜂) = (1 − 𝜆(𝑣, 𝜂)) 𝑠+(𝑣, 𝜂) + 𝜆(𝑣, 𝜂)𝑠−(𝑣, 𝜂). (11b)

2 Stopping and restoring usually happen within seconds, whereas the total clearance time could last more than half an hour, where evidence will be given 
in Section 4.3.2.

3 However, theoretically, this value could exceed one, as it represents the expected number of vehicles involved in a collision on the roadway segment at 
each time step.
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Fig. 9. Relationship between macroscopic fully autonomous traffic mobility with desired speed and headway. (a) Three-dimensional representation of CIC as a 
function of speed and headway; (b) Two-dimensional projection of CIC onto the speed-headway plane.

Solving the above equations leads to: 

𝜆(𝑣, 𝜂) = 1
1 + 𝜏

𝑇𝑃 (𝑣,𝜂)

. (11c)

Together with Eqs. (8), (9), and (10), the analytical form of CIC can then be derived as follows, which serves as a mobility 
measurement for the macroscopic fully autonomous traffic considering robotic uncertainties: 

𝑠(𝑣, 𝜂) =
𝑠+(𝑣, 𝜂)

1 + 𝑇
𝜏 𝑃 (𝑣, 𝜂)

= 1

𝜂 + 𝑇𝐿
𝜏𝑣 ∫ 𝑙

−∞
1

√

2𝜋𝑣2𝜂𝜎2𝑜
𝑒𝑥𝑝

(

− (𝜔−𝑣𝜂)2

2𝑣2𝜂𝜎2𝑜

)

𝑑𝜔
. (12)

4.3.2. Discussions
Using the closed-form equation, we now analyze how CIC varies with speed and headway. The results are illustrated in Fig. 

9. Consistent with previous settings, we set 𝜎𝑜 = 0.05, and 𝑙 = 5. Additionally, the roadway segment 𝐿 is set to be 5000 m and 
the time step 𝜏 is 0.1 s. The total clearance time (TCT) is assumed to be a linear function of speed, ranging from a minimum of 
30 min at 0 km/h to a maximum of 60 min at 120 km/h. This assumption is based on empirical evidence that higher speeds can 
cause more severe collisions at high traffic flow, resulting in a longer clearance time (Christoforou et al., 2010). Meanwhile, it is 
observed that traffic flow information does not contribute much to the accuracy of clearance duration predictions (Mihaita et al., 
2019). Furthermore, HDV collision duration data in North Virginia (Dougald et al., 2016) and San Francisco, USA, and Sydney, 
Australia (Grigorev et al., 2022) indicate that TCT usually varies from half to an hour.

When the desired speed is fixed and headway increases, CIC initially rises sharply before gradually declining. Conversely, the 
capacity is only sensitive to specific speed ranges when the desired headway is roughly between 2 s and 3 s. Outside of this range, 
capacity remains largely unaffected by speed changes. Overall, CIC is more sensitive to variations at high speeds and small headways, 
where collisions are more likely. Nonetheless, the global maximum capacity also appears within this range.

In addition, as AV collision clearance has not been well explored in the literature, we also compare the assumed linear TCT with 
a fixed TCT of 45 min at a typical headway of 𝜂 = 2.0 s, as shown in Fig.  10. Generally, no significant differences between the two 
capacities are observed, suggesting that the independence of TCT from speed does not significantly affect CIC’s properties. Upon 
closer inspection, only the capacity with the fixed TCT appears slightly larger at high speeds, as illustrated by the green shaded area 
in the figure.

4.3.3. Comparison with collision-exclusive capacity
Fig.  11 compares CIC and the idealized capacity under perfect operation, demonstrating the macroscopic impact of AV robotic 

uncertainties on mobility. The AV capacity under perfect operation is given by 1∕𝜂, indicating that it is only controlled by the 
headway.

The comparison shows that when the desired headway is relatively large, both capacities are nearly identical. In this case, the 
capacity loss is attributed to the increasing spacing between vehicles, where robotic uncertainty does not significantly impact safety. 
However, as the headway decreases, the gap between the idealized capacity and the collision-inclusive one increases tremendously, 
until the latter drops to zero and remains there. This suggests that when the headway is small, the capacity loss from the idealized 
one is primarily due to the sharply increased collision rate under robotic uncertainty, which results in a longer average duration in 
the abnormal state. Furthermore, the two effects are asymmetric, where headway is a more sensitive variable at smaller values.

Unlike the ideal capacity, the optimal mobility indicated by CIC also depends on the speed. As shown by the orange lines, for 
a given headway, a smaller speed leads to a higher collision probability, resulting in a greater throughput loss. In the next section, 
12 
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Fig. 10. Relationship between collision-inclusive capacity and speed with a fixed headway under different types of TCTs.

Fig. 11. Comparison of our model results (blue curves) with perfect operation assumption (black curve) under different speeds and headway.

we further investigate the optimal combinations of speed and headway to meet different traffic management requirements that 
prioritize mobility and safety, respectively.

5. Suggestions on design and management

In this section, we first conduct a series of sensitivity analyses to discuss the impact of 𝐿, 𝑙, and 𝜎𝑜 on the safety and mobility 
performance of fully autonomous traffic, in order to give suggestions on the AV designs and adaptations on roads. While 𝜏 is 
suggested to be as short as possible, in line with Li (2022)’s suggestion that sensitivity should be as large as possible in the trade-off 
between safety, mobility, and stability. In addition, we further provide optimization over the two controllable variables 𝑣 and 𝜂
under different constraints of fully autonomous traffic to theoretically support traffic management and control.
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Fig. 12. Relationship between collision-inclusive capacity and collision probability with desired headway at a fixed speed under different (a) road lengths, (b) 
vehicle lengths, and (c) independent robotic uncertainties.

5.1. Suggestions on AV and road designs

Among the parameters contributing to collision probability and CIC shown in Eqs. (7) and (12), road length 𝐿 is an inherent 
property of road design. While vehicle length 𝑙 and precision 𝜎𝑜 represent the performance of the AV design from both hardware 
and operating intelligence part.

Road length (𝐿)
The length of a roadway segment 𝐿 does not affect collision probability 𝑝 for each pair of AVs or the full capacity 𝑠+, but it 

influences the collision rate 𝑃  and the associated CIC 𝑠. Specifically, a longer road segment carries more vehicles with the same 
density, resulting in a higher collision rate 𝑃  with the same collision probability 𝑝. Consequently, the transition probability from 
the normal state to the abnormal state becomes larger, resulting in a decline in the overall CIC.

Moreover, as shown in Fig.  12(a), the decline is more obvious when the collision probability becomes large due to a more 
aggressive driving policy, i.e., a smaller 𝜂. Therefore, it is suggested that AV operations can be adaptive given different driving 
environments: When the roadway segment is longer, a more conservative driving strategy can be adopted using a relatively larger 
headway; While when the roadway segment is shorter, a more aggressive value of headway can be chosen.

Vehicle length (𝑙)
The length of a vehicle 𝑙 directly impacts collision probability. Under the same car-following distance (i.e. bump-to-bump gap), 

longer vehicles result in a shorter head-to-tail distance, increasing the collision probability. Meanwhile, the vehicle length 𝑙 has no 
influence on the full capacity 𝑠+, but a negative impact on CIC, as shown in Fig.  12(b).

Under the same headway, longer vehicles decrease CIC by increasing the collision rate. Alternatively, to maintain the same 
safety performance, longer vehicles require larger headway, so that to decrease the capacity. Therefore, compact vehicle design will 
become more favorable for fully autonomous traffic in the future.
14 



H. Li et al. Transportation Research Part C 178 (2025) 105254 
Independent robotic uncertainty (𝜎𝑜)
As the most important parameter to measure the independent robotic uncertainty of autonomous vehicles, 𝜎𝑜 is essential and 

significant to both safety and mobility. As shown in Fig.  12(c), with other parameters unchanged, a lower 𝜎𝑜 would always infer 
vehicle movement with less uncertainty, so as to achieve fewer collisions and higher capacity in fully autonomous traffic. This 
property remains true regardless of the speed and the driving strategies being employed.

Similar to vehicle length, independent robotic uncertainty influences CIC by affecting collision probability (see Eq. (7)). More 
precise sensors and control with smaller 𝜎𝑜 lead to safer traffic conditions under the same driving strategy. And with the same safety 
performance, smaller 𝜎𝑜 allows smaller headway 𝜂 that contributes to higher traffic capacity and greater overall benefit. Therefore, 
it is always beneficial for AVs to achieve higher precision in their operation modules as it simultaneously improves traffic safety 
and mobility.

5.2. Traffic management for fully autonomous traffic

With the relationship between controllable variables and traffic safety and capacity, we can evaluate the benefits of AVs to the 
present transportation system and conduct optimization to further manage the fully autonomous traffic.

While of paramount concern to AV manufacturers, safety does not exist in isolation as an optimization goal within the fully 
transportation systems. Stringently cautious strategies can indefinitely enhance security, albeit at the expense of a notable reduction 
in traffic capacity (see Fig.  11). Therefore, we consider two scenarios, one is trying to achieve the optimal system performance given 
the maximum allowable collision probability, and another is to find the optimal strategy with the minimum collision probability 
given that capacity satisfies traffic demand. Two stakeholders are involved in the management. The crucial parameters on the 
maximum allowable collision probability and the traffic demand are provided by transportation system, the society, and the 
government agency, while the speed of the AV string 𝑣 and headway 𝜂 are controlled by the AV manufacturers.

5.2.1. Capacity improvement
As there always exists a probability for collision, our first analysis is to identify the driving strategy that can maximize the system 

mobility under a maximum allowable collision probability 𝑝̂. It leads to solving a constrained optimization problem:
max
𝑣,𝜂

𝑠(𝑣, 𝜂), (13)

𝑠.𝑡. 𝑝(𝑣, 𝜂) ≤ 𝑝̂.

We then adopt a two-stage approach to tackle this problem. In the first stage, we derive the optimal headway as a function of 
speed. In the second stage, we optimize the speed taking the analytical form of optimal headway into consideration. Notice that 
in the widely-circulated control and management methods for AV car-following strings (Lee et al., 2024), the headway is usually 
controlled for each AV and the speed is controlled for the string as a whole.
Stage One: Optimal headway with respect to a given speed

In the first stage, we propose two lemmas to demonstrate the analytical form of optimal headway 𝜂∗. 

Lemma 1.  For any given maximum allowable collision probability 𝑝̂ and fixed speed 𝑣, there exists a unique 𝜂̂𝑣 such that 𝑝𝑣(𝜂) ≤ 𝑝̂ ⟺

𝜂 ≥ 𝜂̂𝑣. Furthermore, 𝜂̂𝑣 satisfies 𝑝𝑣(𝜂̂𝑣) = 𝑝̂.

Proof.  Notice that 𝐹𝑑(𝑣,𝜂)(𝑙) = Prob(𝑣𝜂 + 𝜖𝑥 ≤ 𝑙). This allows us to define 𝐻𝑣(𝜂; 𝑙) as a function of 𝜂, given by: 

𝐻𝑣(𝜂; 𝑙) = Prob(𝜖𝑥 ≤ 𝑙 − 𝑣𝜂). (14)

Clearly, 𝐻𝑣(𝜂; 𝑙) is a monotonically decreasing function of 𝜂. Therefore, 𝜂 and 𝑝𝑣(𝜂) a bijective mapping where 𝑝𝑣(𝜂) decreases 
with the increase of 𝜂. □

Lemma 2.  Given speed 𝑣, the optimal headway 𝜂† of the optimization problem (13) is always achievable and is a function of 𝑣.

Proof.  When AVs’ operational speed is fixed at 𝑣, the original problem (13) can be formulated as: 

min
𝜂

1
𝑠𝑣(𝜂)

= 𝜂 + 𝑇𝐿
𝑣𝜏

𝑝𝑣(𝜂), (15a)

𝑠.𝑡. 𝜂 ≥ 𝜂̂𝑣,

where 𝑠𝑣(𝜂) denotes the function of CIC under fixed speed 𝑣, and 𝜂̂𝑣 is determined according to Lemma  1.
The first order condition of the reformulated problem suggests that: 

1 + 𝑇𝐿
𝑣𝜏

𝑝′𝑣(𝜂
∗) = 0, (15b)

where 𝜂∗𝑣 is the optimal solution of the underlying unconstrained program, and 𝑝′𝑣(𝜂∗𝑣 ) denotes the first order derivative, that is, 
𝑑𝑝𝑣(𝜂)

| ∗ . As 𝑝 (𝜂) is a monotonically decreasing function of 𝜂, it is theoretically possible that a 𝜂∗ ≥ 0 exists such that 𝑝′ (𝜂∗) = − 𝑣𝜏 . 
𝑑𝜂 𝜂=𝜂𝑣 𝑣 𝑣 𝑣 𝑣 𝑇𝐿
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Fig. 13. The change of locally optimal headway according to different safety constraints The blue curve represents the CIC. The red line depicts the collision 
probability on the logarithmic scale. The light gray star indicates the optimal headway for 𝑝̂ = 10−8, and the dark gray star marks the optimal headway for 
𝑝̂ = 10−10.

Then, if ∀𝜂 ≥ 𝜂̂𝑣, − 𝑣𝜏
𝑇𝐿 < 𝑝′𝑣(𝜂) < 0, the objective is monotonically increasing with 𝜂, making the optimal headway being 𝜂̂𝑣. If 𝜂∗𝑣 ≥ 𝜂̂𝑣

and 𝑝′𝑣(𝜂∗𝑣 ) = − 𝑣𝜏
𝑇𝐿 , 𝜂∗𝑣 is the optimal headway. In conclusion, the optimal headway of problem (15a) can be denoted as: 

𝜂†(𝑣) = max{𝜂̂𝑣, 𝜂∗𝑣}. □ (15c)

Fig.  13 illustrates the two possible optimal headway under Gaussian car-following distance assumption. When collision 
probability is confined to be under 10−10, the safety constraint is binding so that the optimal headway is given by 𝜂̂. When the 
maximum allowable collision probability is relaxed to 10−8, the global optimal headway 𝜂∗ is achieved.
Stage Two: Optimal speed for traffic mobility

To evaluate the optimal speed that maximizes CIC, we first examine the relationship between speed and headway under the 
same level of collision probability. 

Lemma 3.  When the collision probability remains constant, an increase in 𝑣 results in a decrease in 𝜂, and vice versa.

Proof.  From Lemma  1, we know that 𝑝(𝑣, 𝜂) is monotonically decreasing with 𝜂. Using the same logic, we denote: 
𝐺𝜂(𝑣; 𝑙) = Prob(𝜖𝑥 ≤ 𝑙 − 𝑣𝜂) = 𝐻𝑣(𝜂; 𝑙), (16a)

which is a monotonically decreasing function of 𝑣, that is, 𝜕𝑝𝜕𝑣 < 0. Notice that: 

𝑑𝑝(𝑣, 𝜂) =
𝜕𝑝
𝜕𝑣

𝑑𝑣 +
𝜕𝑝
𝜕𝜂

𝑑𝜂 = 0 ⇒
𝑑𝜂
𝑑𝑣

= −
𝜕𝑝
𝜕𝑣

∕
𝜕𝑝
𝜕𝜂

. (16b)

Since 𝜕𝑝𝜕𝑣 < 0, 𝜕𝑝𝜕𝜂 < 0, then 𝑑𝜂𝑑𝑣 < 0, suggesting the headway decreases with the increase of speed to maintain the same probability 
of collision. The proof is concluded. □

Proposition 1.  The CIC under optimal headway 𝜂† is monotonically increasing with speed 𝑣.

Proof.  For any pair of 𝑣1 < 𝑣2, the optimal headways are 𝜂†(𝑣1) and 𝜂†(𝑣2). We now introduce an augmented variable 𝜂𝑟, which is 
given as follows: 

𝑝(𝑣2, 𝜂𝑟) = 𝑝(𝑣1, 𝜂†(𝑣1)). (17a)

Given that 𝑣1 < 𝑣2, Lemma  3 indicates that 𝜂†(𝑣1) > 𝜂𝑟. Therefore,
𝑠𝜂† (𝑣2) ≥ 𝑠(𝑣2, 𝜂𝑟)

= 1
𝜂 + 𝑇𝐿 𝑝(𝑣 , 𝜂 )

= 1
𝜂 + 𝑇𝐿 𝑝(𝑣 , 𝜂†(𝑣 ))
𝑟 𝜏𝑣2 2 𝑟 𝑟 𝜏𝑣2 1 1
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Fig. 14. Impact of safety constraints on the optimal CIC under varying speed. Contours show the CIC across speed–headway combinations. Blue curves Lines 
represent safety constraints and corresponding optimal headway for 𝑝̂ ≤ 10−8 and 𝑝̂ ≤ 10−10 with varying speed. Stars mark the maximum CIC under each 
constraint.

> 1
𝜂†(𝑣1) +

𝑇𝐿
𝜏𝑣1

𝑝(𝑣1, 𝜂†(𝑣1))

= 𝑠∗(𝑣1). (17b)

Here, the first inequality holds due to the optimality of 𝑠𝜂† (𝑣2). The following equality is derived by definition, while the second 
equality is based on the assumption in Eq. (17a). Then the last inequality stands since 𝜂†(𝑣1) > 𝜂𝑟. The inequality implies that CIC 
under speed 𝑣2 with optimal headway 𝜂†(𝑣2) is greater than that under speed 𝑣1 with optimal headway 𝜂†(𝑣1). Since 𝑣2 and 𝑣1 are 
an 𝑣2 > 𝑣1, the proof is concluded. □

Remark.  The lemmas and propositions hold so long as 𝐹𝑑(𝑣,𝜂)(𝑙) is a well-defined cumulative distribution function. Consequently, 
the stochastic car-following distance can follow any distribution, not limited to the Gaussian distribution. However, if it follows, 𝜂̂
can be obtained from 𝑝̂ by Gaussian distribution lookup table. The corresponding formulation of CIC can be explicitly stated:

𝑠𝜂† (𝑣) =

⎛

⎜

⎜

⎜

⎝

𝜂†(𝑣) + 𝑇𝐿
𝜏𝑣 ∫

𝑙

−∞

1
√

2𝜋𝑣2𝜂†(𝑣)𝜎2𝑜
𝑒𝑥𝑝

(

−
(𝜔 − 𝑣𝜂†(𝑣))2

2𝑣2𝜂†(𝑣)𝜎2𝑜

)

𝑑𝜔

⎞

⎟

⎟

⎟

⎠

−1

. (18)

Fig.  14 presents the variation of CIC with respect to the desired speed and headway, presented as a two-dimensional diagram 
where the color gradient represents the value of CIC. The blue solid line represents a milder safety constraint with 𝑝 ≤ 10−8. Under 
this condition, the optimal headway for each speed always achieves the global optimal headway (𝜂∗𝑣 ), indicated by the dashed red 
line. In contrast, the blue dashed line corresponds to a stricter safety constraint, where 𝑝 ≤ 10−10. For this scenario, the optimal 
headway per each speed coincides with the value that makes the safety constraint binding.

In accordance with Proposition  1, the optimal speeds for both scenarios are achieved at the highest speeds. While a larger 
speed always benefits CIC theoretically, practical speed limits are often imposed by road conditions such as curvature, slope, 
unevenness, etc. In addition, a higher speed with the corresponding optimal headway may not always result in a larger desired 
car-following distance. As can be observed in Fig.  14, under the Gaussian distribution assumption, the optimal headway decreases 
as speed increases, leaving the product of speed and headway, i.e., the desired car-following distance, indeterminate. Therefore, it is 
recommended the AV string to drive as fast as possible only within reasonable limits, aligning with the intuitive goal of improving 
traffic capacity.

5.2.2. Safety enhancement
Nonetheless, when traffic demand is small, aggressive driving policies for high capacity are unnecessary. Instead, as long as the 

capacity can meet traffic needs, the driving strategy should be adjusted to reduce the collision probability to the greatest extent 
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possible. Again, this management strategy can be represented by a constrained optimization problem:

min
𝑣,𝜂

𝑝(𝑣, 𝜂), (19)

𝑠.𝑡. 𝑠(𝑣, 𝜂) ≥ 𝑠̂.

To solve this problem analytically, we again adopt the previous two-stage approach.
Stage One: Optimal headway with respect to given speed

Lemma 4.  If the optimization problem (19) is feasible for a specified speed 𝑣, then there exists a critical headway 𝜂𝑟𝑣, defined as the 
maximum headway 𝜂 for which the capacity requirement 𝑠(𝑣, 𝜂) ≥ 𝑠̂ holds. Furthermore, 𝜂𝑟𝑣 minimizes the collision probability 𝑝(𝑣, 𝜂𝑟𝑣) for 
the specified speed 𝑣. Mathematically, we define 𝜂𝑟𝑣 = max{𝜂|𝑠(𝑣, 𝜂) ≥ 𝑠̂}, and 𝑝(𝑣, 𝜂𝑟𝑣) = min𝜂 𝑝(𝑣, 𝜂𝑟).

Proof.  According to the assumption, we know that for the given speed 𝑣, the set {𝜂|𝑠(𝑣, 𝜂) ≥ 𝑠̂} non-empty.
We now claim that the CIC cannot increase infinitely with respect to 𝜂, which can be easily shown by contradiction. If not, as 𝜂

approaches infinity, we have: 

lim
𝜂→+∞

𝑠 = 1
𝜂 + 𝑇𝐿

𝜏𝑣 𝑝(𝑣, 𝜂)
= 1

+∞ + 𝑇𝐿
𝜏𝑣 𝑝(𝑣, 𝜂)

= +∞, (20a)

that implies: 

lim
𝜂→∞

1
𝑠
= +∞+ 𝑇𝐿

𝜏𝑣
𝑝(𝑣, 𝜂) = 0, (20b)

which further suggests: 

lim
𝜂→+∞

𝑇𝐿
𝜏𝑣

𝑝(𝑣, 𝜂) = −∞. (20c)

It then leads to the conclusion that: 

lim
𝜂→+∞

𝑝(𝑣, 𝜂) = −∞ × 𝜏𝑣
𝑇𝐿

= −∞. (20d)

However, since 𝑝(𝑣, 𝜂) defines the probability function, it must always be a positive value less or equal to one, which contradict 
to the assumption.

Since the CIC cannot increase infinitely with respect to 𝜂, there exists a critical headway 𝜂𝑟𝑣 = max{𝜂|𝑠(𝑣, 𝜂) ≥ 𝑠̂}. As suggested 
by Lemma  1, the collision probability under any specified speed decreases with the increase of 𝜂, i.e., 𝑝′𝑣(𝜂) < 0, then 𝜂𝑟𝑣 minimizes 
𝑝(𝑣, 𝜂) for the specific speed 𝑣. The proof is concluded. □

This lemma suggests that under a fixed speed 𝑣, the highest headway that satisfies the capacity requirement also leads to the 
lowest probability of collision.
Stage Two: Optimal speed for safety enhancement

Proposition 2.  The collision probability under optimal headway 𝑝(𝑣, 𝜂𝑟𝑣) is a decreasing function of speed 𝑣.

Proof.  For any pair of 𝑣1 < 𝑣2, suppose the corresponding optimal headway for problem (19) are 𝜂𝑟𝑣1  and 𝜂
𝑟
𝑣2
. Since 𝑠(𝑣1, 𝜂𝑟𝑣1 ) =

𝑠(𝑣2, 𝜂𝑟𝑣2 ) = 𝑠̂, we have: 
1

𝑠(𝑣2, 𝜂𝑟𝑣1 )
= 𝜂𝑟𝑣1 +

𝑇𝐿
𝜏𝑣2

𝑝(𝑣2, 𝜂𝑟𝑣1 ) < 𝜂𝑟𝑣1 +
𝑇𝐿
𝜏𝑣1

𝑝(𝑣1, 𝜂𝑟𝑣1 ) =
1
𝑠̂
= 𝜂𝑟𝑣2 +

𝑇𝐿
𝜏𝑣2

𝑝(𝑣2, 𝜂𝑟𝑣2 ). (21a)

The first inequality holds since the collision probability monotonically decreases with the increase of speed at the same headway. 
Given that Therefore, we derive that: 

𝑠(𝑣2, 𝜂𝑟𝑣1 ) > 𝑠(𝑣2, 𝜂𝑟𝑣2 ). (21b)

According to Lemma  4, 𝜂𝑟𝑣2  is the highest 𝜂 that makes 𝑠(𝑣2, 𝜂
𝑟
𝑣2
) ≥ 𝑠̂. Therefore, ∀𝜂 > 𝜂𝑟𝑣2 , 𝑠(𝑣2, 𝜂) < 𝑠̂. In this context, we conclude 

from Eq. (21b) that: 

𝜂𝑟𝑣1 < 𝜂𝑟𝑣2 . (21c)

Meanwhile, since 𝑣1 < 𝑣2 by assumption, we further have: 

𝑝(𝑣2, 𝜂𝑟𝑣2 ) < 𝑝(𝑣2, 𝜂𝑟𝑣1 ) < 𝑝(𝑣1, 𝜂𝑟𝑣1). (21d)

The proof is concluded. □
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Fig. 15. Safety enhancement with a demand constraint. The blue line confines the feasible region under demand constraint. The star symbol marks the 
corresponding CIC when collision probability is minimized.

When the objective is collision minimization, Proposition  2 indicates that both the optimal speed and headway should be 
maximized so long as the capacity constraint is met. Accordingly, this maximization results in a larger desired car-following distance. 
This result contrasts with the case of capacity improvement, where the desired car-following distance under the optimality may not 
be the largest.

Fig.  15 provides an example for safety enhancement with Gaussian distribution assumption. The feasible region is circled by the 
blue line. The optimal policy is at the upper right corner of the region, with the maximum feasible speed and maximum feasible 
headway. In summary, for the macroscopic traffic management for fully autonomous traffic, setting a high speed is in general 
advantageous, whether the objective is capacity improvement or safety enhancement. However, the optimal headway should be 
adjusted based on the prioritized objective. When safety is the primary concern, the corresponding headway is typically greater 
than that required for capacity improvement.

6. Extensions

Building on the previous analysis which primarily focused on single-lane scenarios and independent collisions, this section 
extends the model framework to account for non-independent collisions and multi-lane roads, enabling an evaluation of its 
generalization capability.

6.1. Overlapping collisions

Fig.  16 overviews the locations of a second possible collision when the first collision happens. As can be seen, the previous analysis 
focuses on independent collisions is aligned with the demonstration in Fig.  16(c), where the second possible collision happens in 
the ‘‘Normal 3’’ regime. Next, we move to the scenarios when the second possible collision happens in ‘‘Normal1’’ or ‘‘Normal2’’, 
which corresponds to Fig.  16(a) and (b), respectively.

As shown in Fig.  16(a), ‘‘Normal1’’ is located downstream of the original collision, allowing its vehicles to move freely to the 
end of the road at location 0, unaffected by the original collision. If a second collision occurs in ‘‘Normal 1’’, it halts the upstream 
vehicles within the same regime as illustrated by the shaded red area. The abnormal state will be recovered to the new normal state 
after a period of 𝑇 , with the corresponding normal operations depicted by the shaded blue area. The two shaded areas are of equal 
size, as represent the movements of the same set of vehicles over the same amount of length. Therefore, compared to the case with 
only one collision, the second collision in ‘‘Normal1’’ merely shifts the flow that would have traversed ‘‘Normal1’’ to ‘‘Normal3’’. 
Although this creates a different time-space diagram, the shift does not alter the road capacity dynamics captured by the previous 
semi-Markov process.

We now turn to the case that a second collision occurs in ‘‘Normal2’’. A second collision in this regime only affects upstream 
vehicles alongside the road to its entrance at location 𝐿. Vehicles affected by the second collision will be blocked earlier than the 
original collision, as illustrated by the shaded red area in Fig.  16(b). However, they will also recover earlier, catching up with the 
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Fig. 16. Desired traffic flows of the situation where a second independent collision happens in (a) ‘‘Normal1’’, (b) ‘‘Normal2’’, and (c) ‘‘Normal3’’.

previous cars after the collision is cleared, and continue to form a car-following string, as depicted by the shaded blue area in Fig. 
16(b). Similar to the previous case, the road capacity dynamics can still be depicted by the previous semi-Markov process.

In conclusion, the location of the second collision before the first one is cleared does not affect the nature of the capacity dynamics 
at each single location along the roadway, whose stationary property is captured by CIC introduced in the last section. Nonetheless, 
when considering the traffic throughput within a limited amount of time, the location of the second collision matters. In other words, 
the impacts of overlapping collisions and independent collisions are different. When a limited study period is assumed, we examine 
the expected value of traffic throughput of the roadway segment as the corresponding measure. Here, we provide the general form 
of CIC for one lane under overlapping collisions, 𝑠𝑐 (𝑣, 𝜂), as follows: 

𝑠𝑐 (𝑣, 𝜂) =
∞
∑

𝑖=0
𝑝𝑐,𝑖(𝑣, 𝜂)𝑠𝑐,𝑖(𝑣, 𝜂). (22a)

Here, 𝑝𝑐,𝑖 shows the probability that the 𝑖th collision occurs, while 𝑠𝑐,𝑖 indicates the associated throughput. In this context, 𝑝𝑐,0
represents the probability that no collision happens in the study period, and 𝑠𝑐,0 = 𝑠+. When the study period is assumed to be one 
hour, i.e., 𝐻 = 1 h = 3600 s, the specific form with at most two overlapping collisions is given by: 

𝑠𝑐 (𝑣, 𝜂) ≈ 𝑝𝑐,0(𝑣, 𝜂)𝑠𝑐,0(𝑣, 𝜂) + 𝑝𝑐,1(𝑣, 𝜂)𝑠𝑐,1(𝑣, 𝜂) + 𝑝𝑐,2(𝑣, 𝜂)𝑠𝑐,2(𝑣, 𝜂), (22b)

in which the first two terms are given as follows:

𝑝 (𝑣, 𝜂)𝑠 (𝑣, 𝜂) = 1 − 𝑝(𝑣, 𝜂)
𝐻
𝜏

𝐿
𝜂𝑣 𝑠+(𝑣, 𝜂)
𝑐,0 𝑐,0 ( )
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≈

⎛

⎜

⎜

⎜

⎝

1 − 𝐻
𝜏

𝐿
𝜂𝑣

𝑝(𝑣, 𝜂) +
𝐻
𝜏

𝐿
𝜂𝑣

(

𝐻
𝜏

𝐿
𝜂𝑣 − 1

)

2
𝑝(𝑣, 𝜂)2

⎞

⎟

⎟

⎟

⎠

𝑠+(𝜂); (22c)

𝑝𝑐,1(𝑣, 𝜂)𝑠𝑐,1(𝑣, 𝜂) =
𝐻
𝜏

𝐿
𝜂𝑣

𝑝(𝑣, 𝜂) (1 − 𝑝(𝑣, 𝜂))
𝐻
𝜏

𝐿
𝜂𝑣−1

(

1 − 𝑇
𝐻

)

𝑠+(𝑣, 𝜂)

≈ 𝐻
𝜏

𝐿
𝜂𝑣

𝑝(𝑣, 𝜂)

⎛

⎜

⎜

⎜

⎝

1 − 𝐻
𝜏

𝐿
𝜂𝑣

𝑝(𝑣, 𝜂) +
𝐻
𝜏

𝐿
𝜂𝑣

(

𝐻
𝜏

𝐿
𝜂𝑣 − 1
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Here, the equalities in both equations holds due to the independence nature of the occurrence of collisions at different locations 
within time step. Specifically, the probability that no collisions occur during the study period, denoted by 𝑝𝑐,0(𝑣, 𝜂), is given 
by to (1 − 𝑝(𝑣, 𝜂))

𝐻
𝜏

𝐿
𝜂𝑣 , and the associated capacity under this no-collision scenario corresponds to the full capacity 𝑠+(𝑣, 𝜂). The 

approximation in Eq. (22c) is based on a binomial expansion, which is justified by the fact that 𝑝(𝑣, 𝜂) is in general small. The 
second term accounts for the scenario in which exactly one collision occurs during the study. This occurs with a probability of 
𝐻
𝜏

𝐿
𝜂𝑣 𝑝(𝑣, 𝜂) (1 − 𝑝(𝑣, 𝜂))
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𝜂𝑣−1, and the corresponding throughput is reduced to 
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)

𝑠+(𝑣, 𝜂). A binomial expansion is also applied 
to the first approximation in Eq. (22d), and the second approximation holds under the assumption that 𝑝(𝑣, 𝜂) is sufficiently small 
such that higher-order terms beyond 𝑝(𝑣, 𝜂)2 can be negligible.

The third term in Eq. (22b), representing the two-accidents scenario, encloses two detailed situations. In the first situation, 
the two collisions happens in the ‘‘Normal 1’’ or ‘‘Normal 2’’ regions of the original collision (see Fig.  16(a) and (b)) and thereby 
are overlapping. We denote the corresponding probability and the remaining capacity as 𝑝𝑐𝑜,2 and 𝑠𝑐𝑜,2, respectively. As previously 
analyzed, its remaining capacity is equivalent to that under the one-collision scenario, that is, 𝑠𝑐𝑜,2 =

(

1 − 𝑇
𝐻

)

𝑠+(𝑣, 𝜂).
The second situation depicts two independent collisions, whose corresponding probability and the remaining capacity are 

represented as 𝑝𝑐𝑖,2 and 𝑠𝑐𝑖,2, respectively. As TCT is assumed to exceed half an hour, two independent collisions within the study 
period, which is set to one hour, would completely block the roadway, making the corresponding capacity 𝑠𝑐𝑖,2 equal to 0 veh/hr. 
Together, the third term in Eq. (22b) is given by:
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Similarly, the approximation is also based on binomial expansion with terms with equal or higher order than 𝑝(𝑣, 𝜂)2 since 𝑝(𝑣, 𝜂)
is small.

Integrating Eqs. (22c)–(22e) together, the CIC considering overlapping collisions is summarized as follows: 

𝑠𝑐 (𝑣, 𝜂) ≈
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𝑠+(𝜂). (22f)

Remark.  Given that AV collisions are small probability events due to the stringent AV safety requirement, we assume that three 
collisions in one study period is nearly impossible and thereby neglecting the discussion of this scenario.

6.2. Multiple-lane roads

The previous analyses assume that all collisions occur within the same lane. On roads supporting fully autonomous traffic with 
multiple lanes, the CIC per lane remains unchanged when a single collision occurs. However, when two collisions occur, their relative 
positions across different lanes become critical in determining the macroscopic traffic performances. In this context, the property 
of the semi-Markov process diminishes, making it impossible to establish a stationary CIC. Instead, we rely on the lane-average 
expected throughput of the roadway segment to measure the mobility of multi-lane traffic.

In particular, we look into the scenario where two collisions occur on two adjacent lanes on a two-lane roadway. Fig.  17 compares 
the movements of AV strings under cases when AVs are allowed to change lanes or not. If lane changes are allowed, a throughput 
equals the full capacity of one lane can still be maintained. Accordingly, the lane-average expected throughput is given by: 

𝑠𝑙,2(𝑣, 𝜂) = 𝑠𝑐 (𝑣, 𝜂) + 𝑝𝑙,2(𝑣, 𝜂)𝛥𝑠𝑙,2(𝑣, 𝜂). (23a)
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Fig. 17. Two collisions occur on: (a) two independent lanes without lane-changing; (b) a two-lane road with lane-changing allowed.

In this equation, 𝑠𝑐 stands for the expected throughput with not lane change permissions, which is identical to that in the single 
lane scenario given by Eq. (22f). The second term represents the gains in throughput per lane from the lane change, where 𝑝𝑙,2
captures the probability when two collisions occurs on different lanes, and 𝛥𝑠𝑙,2 the expected additive capacity. Specifically,

𝑝𝑙,2(𝑣, 𝜂) =
(
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In Eq. (23c), 𝐷 represents the minimum gap between two collisions that allow lane-changing, which is normally equal to several 
times the length of a vehicle. If there is not enough space to change lanes, the additive traffic throughput does not hold. However, 
compared with the road length 𝐿, 𝐷 is far small (i.e., 2𝐷 ≪ 𝐿). Hence we can ignore its marginal utility and derive the approximate 
expected capacity in the event of accidents in adjacent lanes.

Finally, the overall expected throughput per lane can then be derived by combining Eqs. (23a)–(23c):
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In conclusion, based on our above analyses, two-lane roads not only double the number of lanes but also slightly increase the 
expected throughput of each lane. Therefore, two-lane roads with lane change permissions have more than twice the traffic capacity 
compared to single-lane roads.

6.3. Comparison

Finally, we compare the hourly expected throughput in the extended scenarios with CIC derived under the baseline single-lane 
setting with non-overlapping collisions. Yet, these two metrics are not directly comparable, as the former represents an hourly 
expectation, while the latter reflects a long-term average under stationary conditions. To ensure a fair comparison, we first transform 
CIC in Eq. (12) into its one-hour approximation by considering the case in which at most one collision occurs within an hour. This 
approximation is motivated by the consideration that two independent collisions would block the lane for the entire hour as each of 
their TCTs exceeds half an hour. Mathematically, the resulting expression corresponds to the first-order Taylor expansion of Eq. (12). 
Consistent with the derivations shown in Eqs. (22f) and (23d), it neglects higher-order terms, specifically those of order 𝑝(𝑣, 𝜂)2 and 
beyond. The final mathematically expression is given by:

𝑠(𝑣, 𝜂) ≈
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𝜏𝜂𝑣
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)
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Fig.  18 presents the comparison results at an operational speed of 50 km/h. Compared to the baseline scenario, the presence of 
overlapping collisions and the allowance of lane changing on multi-lane roads both contribute to increased throughput when the 
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Fig. 18. The comparison of the one-hour expected throughput (in blue curves) under three conditions with the same single-vehicle collision probability.

desired headway is less than 2.5 s. Furthermore, multi-lane roads that permit lane changing yield a greater increase in throughput 
than overlapping collisions. When headway exceeds 2.5 s, the throughput gains in both scenarios become negligible. It is also noticed 
that the throughput under the extended scenarios retains the properties summarized in Section 5. In this regard, the proposed control 
and management strategies remains applicable to the extended scenarios.

7. Conclusion

In this paper, we analyzed the impact of microscopic robotic uncertainties in autonomous vehicles on macroscopic traffic in terms 
of collisions and capacity in the car-following scenario. These systematic uncertainties rooted in sensors, onboard algorithms, and 
actuators of all mobile robots including AVs, which are unrelated to the external environment and driving intentions, contribute 
to their stochastic deviation from the intended movement trajectory. These random movements serve as a source of collisions, 
undermining the safety and mobility performance of the fully autonomous traffic system.

A modified IDM model is adopted to describe AVs’ car-following behaviors under robotic errors, including perception and control 
errors, revealing that the resulting car-following distance follows a Gaussian distribution. This characteristic is further validated using 
real-world autonomous driving data from Waymo. The statistical nature also allows for an explicit formulation of the probability of 
rear-end collisions caused by uncertainties in the car-following headway. By incorporating the total clearance time required for a 
collision resolution, the dynamics of traffic capacity at each point are mathematically modeled as a function of speed and headway 
through a semi-Markov process. The expected value of capacity, referred to as collision-inclusive capacity, serves as a key metric 
for evaluating the combined mobility and safety performance of fully autonomous traffic.

Further analyses investigate the influence of road length, vehicle dimensions, and the independent robotic uncertainties of AVs, 
offering valuable insights for AV development and adaptability to road networks. More importantly, two optimization problems 
are proposed for the macroscopic management. One determines the optimal headway and speed that maximizes collision-inclusive 
capacity under safety constraints, and the other minimizes the collision probability while ensuring collision-inclusive capacity meets 
demand. Theoretical discussions suggest that speed maximization under optimal conditions is recommended in both cases.

Our future work will extend the investigation into safety and mobility trade-offs in more AV-involved traffic operational scenarios, 
including those with complex traffic dynamics, as well as mixed traffic flows involving both AVs and HDVs, or heterogeneous AVs 
from different manufacturers. As robotic uncertainty is widely recognized in complex self-driving scenarios (Cao et al., 2023), our 
analytical model grounded in probabilistic characterizations is expected to remain applicable under these conditions.

In scenarios involving both AVs and HVs, it is worth noting that the randomness associated with human-driven vehicles has been 
investigated in both macroscopic traffic flow models (Jabari and Liu, 2012) and microscopic car-following models (Xu and Laval, 
2020). Building on this existing body of research, our microscopic analysis can be extended to incorporate the heterogeneous motion 
stochasticity for AVs and HDVs, contributing to a promising foundation for modeling compound uncertainty in mixed AV-HDV traffic.

Building on the richness of the proposed model framework, our future studies will also expand to discussions on the economic 
benefits, investment strategies, and managerial insights for AV development. Specifically, we will focus on optimizing key 
performance metrics, such as the maximum allowable collision probability, and the co-opetition between government agencies and 
AV manufacturers when their objectives differ.
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